Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39153407

RESUMO

Phytic acid or inositol hexakisphosphate (InsP6) and its dephosphorylated forms (InsP5, InsP4 & InsP3) are integral to cellular functions and confer several health benefits. The present study was aimed to develop a cost effective and high sample throughput RP-HPLC-RID method for routine quantification of lower inositol phosphates in both raw and processed cereals and pulses. For this asuitable mobile phase composition was formulated and two columns (MacroporusHamilton PRP-1 Vs Waters Symmetry C18) were compared in terms ofsystem specificity,linearity, accuracy and precision. Separation ofInsP3, InsP4, InsP5 and InsP6 were recorded at 2.39, 2.93, 3.83 and 5.37 min usingPRP-1column while the RT were 4.67, 5.64, 6.99 and 9.14 min with C18column.Linearity of standards (R2 > 0.99), with an accuracy and precision ranging from 1 to 5 % was achieved. The LOD and LOQ of all InsPs were 5 and 15 µg/ml, respectively. In quality control sample InsP6 was found in highest concentration (446 ± 14.71 mg/100 g) followed by InsP5 (162 ± 8.00 mg/100 g) and InsP4 with the least concentration of 11.63 ± 1.06 mg/100 g whereas InsP3 was below detectable limit (BDL). The optimised method was used for profiling of InsPs in the raw and processed cereals and pulses consumed as staple foods in India. Processed foods contained lesser InsP6 and more of lower InsP compared to raw foods. The optimised method using unique mobile phase composition was found to yield accurate results and can used for large scale analysis of cereals and pulses and estimation of mineral nutrition potential and allied health benefits.

2.
Mol Biol Rep ; 51(1): 619, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709339

RESUMO

BACKGROUND: Rice blast and bacterial leaf blight (BLB) are the most limiting factors for rice production in the world which cause yield losses typically ranging from 20 to 30% and can be as high as 50% in some areas of Asia especially India under severe infection conditions. METHODS AND RESULTS: An improved line of Tellahamsa, TH-625-491 having two BLB resistance genes (xa13 and Xa21) and two blast resistance genes (Pi54 and Pi1) with 95% Tellahamsa genome was used in the present study. TH-625-491 was validated for all four target genes and was used for backcrossing with Tellahamsa. Seventeen IBC1F1 plants heterozygous for all four target genes, 19 IBC1F2 plants homozygous for four, three and two gene combinations and 19 IBC1F2:3 plants also homozygous for four, three and two gene combinations were observed. Among seventeen IBC1F1 plants, IBC1F1-62 plant recorded highest recurrent parent genome (97.5%) covering 75 polymorphic markers. Out of the total of 920 IBC1F2 plants screened, 19 homozygous plants were homozygous for four, three and two target genes along with bacterial blight resistance. Background analysis was done in all 19 homozygous IBC1F2 plants possessing BLB resistance (possessing xa13, Xa21, Pi54 and Pi1 in different combinations) with five parental polymorphic SSR markers. IBC1F2-62-515 recovered 98.5% recurrent parent genome. The four, three and two gene pyramided lines of Tellahamsa exhibited varying resistance to blast. CONCLUSIONS: Results show that there might be presence of antagonistic effect between bacterial blight and blast resistance genes since the lines with Pi54 and Pi1 combination are showing better resistance than the combinations with both bacterial blight and blast resistance genes.


Assuntos
Resistência à Doença , Oryza , Doenças das Plantas , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Oryza/genética , Oryza/microbiologia , Genes de Plantas/genética , Xanthomonas/patogenicidade , Xanthomonas/fisiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Melhoramento Vegetal/métodos
3.
Plant Mol Biol ; 114(3): 41, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625509

RESUMO

Sheath blight disease of rice caused by Rhizoctonia solani AG1-IA, is a major fungal disease responsible for huge loss to grain yield and quality. The major limitation of achieving persistent and reliable resistance against R. solani is the governance of disease resistance trait by many genes. Therefore, functional characterization of new genes involved in sheath blight resistance is necessary to understand the mechanism of resistance as well as evolving effective strategies to manage the disease through host-plant resistance. In this study, we performed RNA sequencing of six diverse rice genotypes (TN1, BPT5204, Vandana, N22, Tetep, and Pankaj) from sheath and leaf tissue of control and fungal infected samples. The approach for identification of candidate resistant genes led to identification of 352 differentially expressed genes commonly present in all the six genotypes. 23 genes were analyzed for RT-qPCR expression which helped identification of Oschib1 showing differences in expression level in a time-course manner between susceptible and resistant genotypes. The Oschib1 encoding classIII chitinase was cloned from resistant variety Tetep and over-expressed in susceptible variety Taipei 309. The over-expression lines showed resistance against R. solani, as analyzed by detached leaf and whole plant assays. Interestingly, the resistance response was correlated with the level of transgene expression suggesting that the enzyme functions in a dose dependent manner. We report here the classIIIb chitinase from chromosome10 of rice showing anti-R. solani activity to combat the dreaded sheath blight disease.


Assuntos
Quitinases , Oryza , Oryza/genética , Genótipo , Rhizoctonia , Quitinases/genética
4.
Sci Rep ; 14(1): 6743, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509120

RESUMO

In rice, grain filling is a crucial stage where asynchronous filling of the pollinated spikelet's of the panicle occurs. It can influence both grain quality and yield. In rice grain, starch is the dominant component and contains amylose and amylopectin. Amylose content is the chief cooking quality parameter, however, rice varieties having similar amylose content varied in other parameters. Hence, in this study, a set of varieties varying in yield (04) and another set (12) of varieties that are similar in amylose content with variation in gel consistency and alkali spreading value were used. Panicles were collected at various intervals and analysed for individual grain weight and quantities of amylose and amylopectin. Gas exchange parameters were measured in varieties varying in yield. Upper branches of the panicles were collected from rice varieties having similar amylose content and were subjected to gene expression analysis with fourteen gene specific primers of starch synthesis. Results indicate that grain filling was initiated simultaneously in multiple branches. Amylose and amylopectin quantities increased with the increase in individual grain weight. However, the pattern of regression lines of amylose and amylopectin percentages with increase in individual grain weight varied among the varieties. Gas exchange parameters like photosynthetic rate, stomatal conductance, intercellular CO2 and transpiration rate decreased with the increase in grain filling period in both good and poor yielding varieties. However, they decreased more in poor yielders. Expression of fourteen genes varied among the varieties and absence of SBE2b can be responsible for medium or soft gel consistency.


Assuntos
Amilose , Oryza , Amilose/metabolismo , Amilopectina/metabolismo , Amido/metabolismo , Grão Comestível/metabolismo , Oryza/genética , Oryza/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA