Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Vaccines (Basel) ; 12(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38793700

RESUMO

The development of mucosal vaccines, which can generate antigen-specific immune responses in both the systemic and mucosal compartments, has been recognized as an effective strategy for combating infectious diseases caused by pathogenic microbes. Our recent research has focused on creating a nasal vaccine system in mice using enzymatically polymerized caffeic acid (pCA). However, we do not yet understand the molecular mechanisms by which pCA stimulates antigen-specific mucosal immune responses. In this study, we hypothesized that pCA might activate mucosal immunity at the site of administration based on our previous findings that pCA possesses immune-activating properties. However, contrary to our initial hypothesis, the intranasal administration of pCA did not enhance the expression of various genes involved in mucosal immune responses, including the enhancement of IgA responses. Therefore, we investigated whether pCA forms a complex with antigenic proteins and enhances antigen delivery to mucosal dendritic cells located in the lamina propria beneath the mucosal epithelial layer. Data from gel filtration chromatography indicated that pCA forms a complex with the antigenic protein ovalbumin (OVA). Furthermore, we examined the promotion of OVA delivery to nasal mucosal dendritic cells (mDCs) after the intranasal administration of pCA in combination with OVA and found that OVA uptake by mDCs was increased. Therefore, the data from gel filtration chromatography and flow cytometry imply that pCA enhances antigen-specific antibody production in both mucosal and systemic compartments by serving as an antigen-delivery vehicle.

2.
J Immunol Methods ; 521: 113554, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37661049

RESUMO

Antibodies are essential components of the immune system with a wide range of molecular targets. They have been recognized as modalities for treating several diseases and more than 130 approved antibody-based therapeutics are available for clinical use. However, limitations remain associated with its efficacy, tissue permeability, and safety, especially in cancer treatment. Nanoparticles, particularly those responsive to external stimuli, have shown promise in improving the efficacy of antibody-based therapeutics and tissue-selective delivery. In this study, we developed a reliable and accurate method for quantifying the amount of antibody loaded onto lipid nanoparticles modified with Herceptin® (Trastuzumab), an antibody-based therapeutic used to treat HER2-positive cancers, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. This method proved to be a suitable alternative to commonly used protein quantification techniques, which are limited by lipid interference present in the samples. Furthermore, the amount of Herceptin modified on the liposomes, measured by this method, was confirmed by Herceptin's antibody-dependent cell-mediated cytotoxicity activity. Our results demonstrate the potential of this method as a critical tool for developing tissue-selective antibody delivery systems, leading to improved efficacy and reduced side effects of antibody-based therapeutics.


Assuntos
Lipossomos , Nanopartículas , Trastuzumab , Anticorpos
3.
ACS Appl Mater Interfaces ; 15(28): 33437-33443, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37410893

RESUMO

The presented work describes the synthesis and characterization of a novel magnetic cationic phospholipid (MCP) system with a stable dopamine anchor as well as its transfection activity study. The synthesized architectural system increases the biocompatibility of iron oxide and promises applications of magnetic nanoparticles in living cells. The MCP system is soluble in organic solvents and can be easily adapted to prepare magnetic liposomes. We created complexes with liposomes containing MCP and other functional cationic lipids and pDNA as gene delivery tools, which possessed the ability to enhance the efficiency of transfection, particularly the process of interaction with cells by inducing a magnetic field. The MCP is able to create iron oxide nanoparticles and has the potential for the materials to prepare the system for site-specific gene delivery with the application of an external magnetic field.


Assuntos
Lipossomos , Fosfolipídeos , Lipossomos/farmacologia , Plasmídeos , Transfecção , Técnicas de Transferência de Genes , Cátions
4.
Pharmaceutics ; 15(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37376113

RESUMO

Strategies for gene and nucleic acid delivery to skeletal muscles have been extensively explored to treat Duchenne muscular dystrophy (DMD) and other neuromuscular diseases. Of these, effective intravascular delivery of naked plasmid DNA (pDNA) and nucleic acids into muscles is an attractive approach, given the high capillary density in close contact with myofibers. We developed lipid-based nanobubbles (NBs) using polyethylene-glycol-modified liposomes and an echo-contrast gas and found that these NBs could improve tissue permeability by ultrasound (US)-induced cavitation. Herein, we delivered naked pDNA or antisense phosphorodiamidate morpholino oligomers (PMOs) into the regional hindlimb muscle via limb perfusion using NBs and US exposure. pDNA encoding the luciferase gene was injected with NBs via limb perfusion into normal mice with application of US. High luciferase activity was achieved in a wide area of the limb muscle. DMD model mice were administered PMOs, designed to skip the mutated exon 23 of the dystrophin gene, with NBs via intravenous limb perfusion, followed by US exposure. The number of dystrophin-positive fibers increased in the muscles of mdx mice. Combining NBs and US exposure, which can be widely delivered to the hind limb muscles via the limb vein, could be an effective therapeutic approach for DMD and other neuromuscular disorders.

5.
Int Immunopharmacol ; 119: 110262, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37150015

RESUMO

The coronavirus disease 2019, i.e., the COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has profoundly impacted global society. One approach to combat infectious diseases caused by pathogenic microbes is using mucosal vaccines, which can induce antigen-specific immune responses at both the mucosal and systemic sites. Despite its potential, the clinical implementation of mucosal vaccination is hampered by the lack of safe and effective mucosal adjuvants. Therefore, developing safe and effective mucosal adjuvants is essential for the fight against infectious diseases and the widespread clinical use of mucosal vaccines. In this study, we demonstrated the potent mucosal adjuvant effects of intranasal administration of sodium nitroprusside (SNP), a known nitric oxide (NO) donor, in mice. The results showed that intranasal administration of ovalbumin (OVA) in combination with SNP induced the production of OVA-specific immunoglobulin A in the mucosa and increased serum immunoglobulin G1 levels, indicating a T helper-2 (Th2)-type immune response. However, an analog of SNP, sodium ferrocyanide, which does not generate NO, failed to show any adjuvant effects, suggesting the critical role of NO generation in activating an immune response. In addition, SNPs facilitated the delivery of antigens to the lamina propria, where antigen-presenting cells are located, when co-administered with antigens, and also transiently elicited the expression of interleukin-6, interleukin-1ß, granulocyte colony-stimulating factor, C-X-C motif chemokine ligand 1, and C-X-C motif chemokine ligand 2 in nasal tissue. These result suggest that SNP is a dual-functional formulation with antigen delivery capabilities to the lamina propria and the capacity to activate innate immunity. In summary, these results demonstrate the ability of SNP to induce immune responses via an antigen-specific Th2-type response, making it a promising candidate for further development as a mucosal vaccine formulation against infectious diseases.


Assuntos
COVID-19 , Vacinas , Camundongos , Animais , Humanos , Administração Intranasal , Nitroprussiato , Formação de Anticorpos , Ligantes , Pandemias , Mucosa , Adjuvantes Imunológicos , Antígenos , Imunidade Inata , Quimiocinas , Imunidade nas Mucosas , Camundongos Endogâmicos BALB C
6.
Int Immunopharmacol ; 112: 109209, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36084540

RESUMO

Autoimmune diseases present a significant clinical problem, highlighting the need for the development of novel or improved therapeutic methods. One of the factors that causes autoimmune diseases is a defect in the clearance of apoptotic cells by phagocytes. Thus, improved apoptotic cell processing has been considered as a strategy to treat autoimmune diseases. However, therapeutic strategies focusing on apoptotic cell clearance have not been approved till date. We have reported that liposomes composed of phosphatidylserine (PS liposomes) exhibit anti-inflammatory or immunosuppressive effects in macrophages. A PS liposome display PS on its surface, which plays a crucial role in the phagocytosis of apoptotic cells by marginal zone macrophages (MZMs), a key player in the clearance of apoptotic cells, by recognizing PS exposed on the surface of apoptotic cells. Therefore, we hypothesized that PS liposomes could be used as "antigen delivery vesicles" to act as a substitute for apoptotic cells in the treatment of autoimmune diseases. In this study, we showed that systemically administered PS liposomes accumulated in the marginal zone of the spleen due to recognition of surface-displayed PS by MZMs because it was observed that liposomes without PS did not accumulate in the marginal zone. In conclusion, PS liposomes may be useful vehicles to function as active agents and/or antigens against autoimmune diseases.


Assuntos
Doenças Autoimunes , Fosfatidilserinas , Camundongos , Animais , Fosfatidilserinas/metabolismo , Lipossomos/metabolismo , Apoptose , Macrófagos , Fagocitose , Antígenos , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo
7.
Matrix Biol Plus ; 15: 100118, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35990309

RESUMO

The linkage between the basement membrane (BM) and cytoskeleton is crucial for muscle fiber stability and signal transduction. Mutations in the linkage molecules can cause various types of muscular dystrophies. The different severities and times of onset suggest that compensatory linkages occur at the sarcolemma. Cluster of differentiation 239 (CD239) binds to the α5 subunit of laminin-511 extracellularly and is connected to spectrin intracellularly, resulting in a linkage between the BM and cytoskeleton. In this study, we explored the linkage of laminin α5_CD239_spectrin in skeletal muscles. Although laminin α5, CD239, and spectrin were present in embryonic skeletal muscles, they disappeared in adult skeletal muscle tissues, except for the soleus and diaphragm. Laminin α5_CD239_spectrin was localized in the skeletal muscle tissues of Duchenne muscular dystrophy and congenital muscular dystrophy mouse models. The experimental regeneration of skeletal muscle increased the CD239-mediated linkage, indicating that it responds to regeneration, but not to genetic influence. Furthermore, in silico analysis showed that laminin α5_CD239_spectrin was upregulated by steroid therapy for muscular dystrophy. Therefore, CD239-mediated linkage may serve as a therapeutic target to prevent the progression of muscular dystrophy.

8.
Membranes (Basel) ; 12(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35736342

RESUMO

An advantage of mucosal vaccines over conventional parenteral vaccines is that they can induce protective immune responses not only at mucosal surfaces but also in systemic compartments. Despite this advantage, few live attenuated or inactivated mucosal vaccines have been developed and applied clinically. We recently showed that the intranasal immunization of ovalbumin (OVA) with class B synthetic oligodeoxynucleotides (ODNs) containing immunostimulatory CpG motif (CpG ODN)-loaded cationic liposomes synergistically exerted both antigen-specific mucosal immunoglobulin A (IgA) and systemic immunoglobulin G (IgG) responses in mice. However, the mechanism underlying the mucosal adjuvant activity of CpG ODN-loaded liposomes remains unknown. In the present study, we showed that the intranasal administration of CpG ODN-loaded cationic liposomes elicited interleukin (IL)-6 release in nasal tissues. Additionally, pre-treatment with an anti-IL-6 receptor (IL-6R) antibody attenuated antigen-specific nasal IgA production but not serum IgG responses. Furthermore, the intranasal administration of OVA and CpG ODN-loaded cationic liposomes increased the number of IgA+/CD138+ plasma cells and IgA+/B220+ B cells in the nasal passages. This increase was markedly suppressed by pre-treatment with anti-IL-6R blocking antibody. In conclusion, IL-6 released by CpG ODN-loaded cationic liposomes at the site of administration may play a role in the induction of antigen-specific IgA responses by promoting differentiation into IgA+ plasma cells for IgA secretion from B cells.

9.
Animal Model Exp Med ; 5(1): 48-55, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35229992

RESUMO

The mdx mouse is a model of Duchenne muscular dystrophy (DMD), a fatal progressive muscle wasting disease caused by dystrophin deficiency, and is used most widely in preclinical studies. Mice with dystrophin deficiency, however, show milder muscle strength phenotypes than humans. In human, the introduction of a sandwich enzyme-linked immunosorbent assay (ELISA) kit revealed a more than 700-fold increase in titin N-terminal fragment levels in the urine of pediatric patients with DMD. Notably, the urinary titin level declines with aging, reflecting progression of muscle wasting. In mouse, development of a highly sensitive ELISA kit has been awaited. Here, a sandwich ELISA kit to measure titin N-terminal fragment levels in mouse urine was developed. The developed kit showed good linearity, recovery, and repeatability in measuring recombinant or natural mouse titin N-terminal fragment levels. The titin N-terminal fragment concentration in the urine of mdx mice was more than 500-fold higher than that of normal mice. Urinary titin was further analyzed by extending the collection of urine samples to both young (3-11 weeks old) and aged (56-58 weeks old) mdx mice. The concentration in the young group was significantly higher than that in the aged group. It was concluded that muscle protein breakdown is active and persistent in mdx mice even though the muscle phenotype is mild. Our results provide an opportunity to develop DMD treatments that aim to alleviate muscle protein breakdown by monitoring urinary titin levels.


Assuntos
Distrofia Muscular de Duchenne , Animais , Criança , Conectina/urina , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Camundongos Endogâmicos mdx , Força Muscular , Distrofia Muscular de Duchenne/genética , Proteínas Quinases
10.
Drug Metab Pharmacokinet ; 44: 100445, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35286862

RESUMO

In recent years, the use of stimuli-responsive carriers and physical energies, such as ultrasound, magnetic force, electric force, and light, in combination therapy has attracted attention as useful gene and oligonucleotide delivery systems. These systems allow target-specific delivery to be achieved relatively easily at the application site of physical energy. Ultrasound-mediated delivery has attracted particular interest because of its noninvasive nature. Microbubbles are ultrasound contrast agents that can act as echo enhancers. Under appropriate conditions, microbubbles or nanosized bubbles can also enhance the efficiency of drug, gene, and oligonucleotide delivery by ultrasound exposure. Therefore, the combination of ultrasound technology and bubbles is expected to be a fusion diagnostic and therapeutic system known as the theranostic system. In this review, we summarize the use of micro- and nanobubbles in ultrasound-mediated gene and oligonucleotide delivery systems, and discuss their potential as therapeutic tools.


Assuntos
Microbolhas , Oligonucleotídeos , Meios de Contraste , Ultrassonografia
11.
Pharmaceutics ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36678759

RESUMO

A key challenge in treating solid tumors is that the tumor microenvironment often inhibits the penetration of therapeutic antibodies into the tumor, leading to reduced therapeutic efficiency. It has been reported that the combination of ultrasound-responsive micro/nanobubble and therapeutic ultrasound (TUS) enhances the tissue permeability and increases the efficiency of delivery of macromolecular drugs to target tissues. In this study, to facilitate efficient therapeutic antibody delivery to tumors using this combination system, we developed therapeutic antibody-modified nanobubble (NBs) using an Fc-binding polypeptide that can quickly load antibodies to nanocarriers; since the polypeptide was derived from Protein G. TUS exposure to this Herceptin®-modified NBs (Her-NBs) was followed by evaluation of the antibody's own ADCC activity, resulting the retained activity. Moreover, the utility of combining therapeutic antibody-modified NBs and TUS exposure as an antibody delivery system for cancer therapy was assessed in vivo. The Her-NBs + TUS group had a higher inhibitory effect than the Herceptin and Her-NBs groups. Overall, these results suggest that the combination of therapeutic antibody-modified NBs and TUS exposure can enable efficient antibody drug delivery to tumors, while retaining the original antibody activity. Hence, this system has the potential to maximize the therapeutic effects in antibody therapy for solid cancers.

12.
Int Immunopharmacol ; 101(Pt A): 108280, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34710845

RESUMO

The COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has proven to be devastating to society. Mucosal vaccines that can induce antigen-specific immune responses in both the systemic and mucosal compartments are considered an effective measure to overcome infectious diseases caused by pathogenic microbes. We have recently developed a nasal vaccine system using cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and cholesteryl 3ß-N-(dimethylaminoethyl)carbamate in mice. However, the comprehensive molecular mechanism(s), especially the host soluble mediator involved in this process, by which cationic liposomes promote antigen-specific mucosal immune responses, remain to be elucidated. Herein, we show that intranasal administration of cationic liposomes elicited interleukin-6 (IL-6) expression at the site of administration. Additionally, both nasal passages and splenocytes from mice nasally immunized with cationic liposomes plus ovalbumin (OVA) were polarized to produce IL-6 when re-stimulated with OVA in vitro. Furthermore, pretreatment with anti-IL-6R antibody, which blocks the biological activities of IL-6, attenuated the production of OVA-specific nasal immunoglobulin A (IgA) but not OVA-specific serum immunoglobulin G (IgG) responses. In this study, we demonstrated that IL-6, exerted by nasally administered cationic liposomes, plays a crucial role in antigen-specific IgA induction.


Assuntos
Imunidade nas Mucosas/imunologia , Imunoglobulina A/metabolismo , Interleucina-6/imunologia , Vacinas/imunologia , Administração Intranasal , Animais , Formação de Anticorpos/efeitos dos fármacos , Antígenos/imunologia , COVID-19/prevenção & controle , Cátions/imunologia , Cátions/uso terapêutico , Ácidos Graxos Monoinsaturados/imunologia , Ácidos Graxos Monoinsaturados/uso terapêutico , Feminino , Imunidade nas Mucosas/efeitos dos fármacos , Imunoglobulina G/sangue , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Lipossomos/imunologia , Lipossomos/uso terapêutico , Camundongos , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Ovalbumina/imunologia , Compostos de Amônio Quaternário/imunologia , Compostos de Amônio Quaternário/uso terapêutico , Baço/metabolismo , Vacinas/administração & dosagem
13.
Pharmaceutics ; 13(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34371694

RESUMO

In brain-targeted delivery, the transport of drugs or genes across the blood-brain barrier (BBB) is a major obstacle. Recent reports found that focused ultrasound (FUS) with microbubbles enables transient BBB opening and improvement of drug or gene delivery. We previously developed nano-sized bubbles (NBs), which were prepared based on polyethylene glycol (PEG)-modified liposomes containing echo-contrast gas, and showed that our NBs with FUS could also induce BBB opening. The aim of this study was to enhance the efficiency of delivery of pDNA into neuronal cells following transportation across the BBB using neuron-binding peptides. This study used the RVG-R9 peptide, which is a chimeric peptide synthesized by peptides derived from rabies virus glycoprotein and nonamer arginine residues. The RVG peptide is known to interact specifically with the nicotinic acetylcholine receptor in neuronal cells. To enhance the stability of the RVG-R9/pDNA complex in vivo, PEGylated polyethyleneimine (PEG-PEI) was also used. The ternary complexes composed of RVG-R9, PEG-PEI, and pDNA could interact with mouse neuroblastoma cells and deliver pDNA into the cells. Furthermore, for the in vivo experiments using NBs and FUS, gene expression was observed in the FUS-exposed brain hemispheres. These results suggest that this systemic gene delivery system could be useful for gene delivery across the BBB.

14.
Biomedicines ; 9(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072455

RESUMO

Conversion of CD4+CD25+FOXP3+ T regulatory cells (Tregs) from the immature (CD45RA+) to mature (CD45RO+) phenotype has been shown during development and allergic reactions. The relative frequencies of these Treg phenotypes and their responses to oxidative stress during development and allergic inflammation were analysed in samples from paediatric and adult subjects. The FOXP3lowCD45RA+ population was dominant in early childhood, while the percentage of FOXP3highCD45RO+ cells began increasing in the first year of life. These phenotypic changes were observed in subjects with and without asthma. Further, there was a significant increase in phosphorylated ERK1/2 (pERK1/2) protein in hydrogen peroxide (H2O2)-treated CD4+CD25high cells in adults with asthma compared with those without asthma. Increased pERK1/2 levels corresponded with increased Ca2+ response to T cell receptor stimulation. mRNA expression of peroxiredoxins declined in Tregs from adults with asthma. Finally, CD4+CD25high cells from paediatric subjects were more sensitive to oxidative stress than those from adults in vitro. The differential Treg sensitivity to oxidative stress observed in children and adults was likely dependent on phenotypic CD45 isoform switching. Increased sensitivity of Treg cells from adults with asthma to H2O2 resulted from a reduction of peroxiredoxin-2, -3, -4 and increased pERK1/2 via impaired Ca2+ response in these cells.

15.
Pharmaceutics ; 13(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923897

RESUMO

Infectious diseases are the second leading cause of death worldwide, highlighting the importance of the development of a novel and improved strategy for fighting pathogenic microbes. Streptococcus pneumoniae is a highly pathogenic bacteria that causes pneumonia with high mortality rates, especially in children and elderly individuals. To solve these issues, a mucosal vaccine system would be the best solution for the prevention and treatment of these diseases. We have recently reported that enzymatically polymerized caffeic acid (pCA) acts as a mucosal adjuvant when co-administered with antigenic proteins via the nasal route. Moreover, the sources of caffeic acid and horseradish peroxidase are ingredients found commonly in coffee beans and horseradish, respectively. In this study, we aimed to develop a pneumococcal nasal vaccine comprising pneumococcal surface protein A (PspA) and pCA as the mucosal adjuvant. Intranasal immunization with PspA and pCA induced the production of PspA-specific antibody responses in the mucosal and systemic compartments. Furthermore, the protective effects were tested in a murine model of S. pneumoniae infection. Intranasal vaccination conferred antigen-dependent protective immunity against a lethal infection of S. pneumoniae. In conclusion, pCA is useful as a serotype-independent universal nasal pneumococcal vaccine formulation.

16.
PLoS One ; 16(2): e0246422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556119

RESUMO

Despite significant modern medicine progress, having an infectious disease is a major risk factor for humans. Mucosal vaccination is now widely considered as the most promising strategy to defeat infectious diseases; however, only live-attenuated and inactivated mucosal vaccines are used in the clinical field. To date, no subunit mucosal vaccine was approved mainly because of the lack of safe and effective methodologies to either activate or initiate host mucosal immune responses. We have recently elucidated that intranasal administration of enzymatically polymerised caffeic acid potentiates antigen-specific mucosal and systemic antibody responses in mice. However, our earlier study has not confirmed whether these effects are specific to the polymer synthesised from caffeic acid. Here, we show that enzymatically polymerised polyphenols (EPPs) from various phenolic compounds possess mucosal adjuvant activities when administered nasally with an antigen to mice. Potentiation of antigen-specific immune responses by all EPPs tested in this study showed no clear difference among the precursors used. We found that intranasal administration of ovalbumin as the antigen, in combination with all enzymatically polymerised polyphenols used in this study, induced ovalbumin-specific mucosal IgA in the nasal cavity, bronchoalveolar lavage fluid, vaginal fluids, and systemic IgG, especially IgG1, in sera. Our results demonstrate that the mucosal adjuvant activities of polyphenols are not limited to polymerised caffeic acid but are broadly observable across the studied polyphenols. These properties of polyphenols may be advantageous for the development of safe and effective nasal vaccine systems to prevent and/or treat various infectious diseases.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Infecções/imunologia , Polifenóis/imunologia , Animais , Formação de Anticorpos , Ácidos Cafeicos/imunologia , Feminino , Imunoglobulina A/imunologia , Camundongos , Camundongos Endogâmicos BALB C
17.
Pharmaceutics ; 13(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430003

RESUMO

The structure-activity relationship of mono-ion complexes (MICs) for plasmid DNA (pDNA) delivery by muscular injection is demonstrated. MICs were formed between pDNA and monocationic poly(ethylene glycol) (PEG) macromolecules. As monocationic PEGs, the ω-amide-pentylimidazolium (APe-Im) end-modified PEGs with a stable amide (Am) and hydrolytic ester (Es) bond, that is, APe-Im-Am-PEG and APe-Im-Es-PEG, respectively, are synthesized. The difference between the APe-Im-Am-PEG and APe-Im-Es-PEG was only a spacer structure between a terminal cation and a PEG chain. The resulting pDNA MICs with APe-Im-Am-PEG at a charge ratio (+/-) of 32 or 64 were more stable than those with APe-Im-Es-PEG in the presence of serum proteins. The highest gene expression by muscular injection was achieved using the APe-Im-Am-PEG/pDNA MIC at a charge ratio (+/-) of 32 with a smaller particle diameter of approximately 50 nm, as compared to that charge ratio of 64. Consequently, the pDNA MIC with the monocationic PEG with a stable amide spacer, as compared to a hydrolytic ester spacer, is considered to be suitable for the highest gene expression by muscular injection.

18.
J Control Release ; 329: 988-996, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33091529

RESUMO

Therapeutic strategies based on antisense oligonucleotides and therapeutic genes are being extensively investigated for the treatment of hereditary muscle diseases and hold great promise. However, the cellular uptake of these polyanions to the muscle cells is inefficient. Therefore, it is necessary to develop more effective methods of gene delivery into the muscle tissue. The A2G80 peptide (VQLRNGFPYFSY) from the laminin α2 chain has high affinity for α-dystroglycan (α-DG) which is expressed on the membrane of muscle cells. In this study, we designed a peptide-modified A2G80 with oligoarginine and oligohistidine (A2G80-R9-H8), and prepared peptide/plasmid DNA (pDNA) complex, to develop an efficient gene delivery system for the muscle tissue. The peptide/pDNA complex showed α-DG-dependent cellular uptake of the A2G80 sequence and significantly improved gene transfection efficiency mediated by the oligohistidine sequence in C2C12 myoblast cells. Further, the peptide/pDNA complex promoted efficient and sustained gene expression in the Duchenne muscular dystrophy mouse models. The A2G80-R9-H8 peptide has the potential for use as a specific carrier for targeting muscle in gene therapy in muscular dystrophy.


Assuntos
Laminina , Células Musculares , Animais , Técnicas de Transferência de Genes , Camundongos , Peptídeos , Plasmídeos
19.
J Biomater Sci Polym Ed ; 32(3): 405-416, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33074050

RESUMO

The polyion complexes (PICs) between plasmid DNA (pDNA) and succinylated branched polyethylenimine (bPEI-Et-COOH) were formed for in vivo pDNA delivery by muscular injection. Transmission electron microscopy (TEM) observation revealed that the PIC between pDNA and bPEI-Et-COOH with higher succinylated degree formed the particle structure with corona-like shell. Furthermore, confocal laser scanning microscopy (CLSM) observation revealed that pDNAs were successfully delivered inside the cells and that the pDNAs were colocalized with the nuclei of the cells after endosomal escape. Although the pDNA/bPEI-Et-COOH PICs mediated significant gene expression in vitro, the PICs did not mediate gene expression in vivo muscular injection. Consequently, the pDNA transfection by bPEI-Et-COOH was noncorrelative between in vitro and in vivo in spite of low toxicity by succinylation both in vitro and in vivo. The noncorrelative relation between in vitro and in vivo for pDNA transfection by bPEI-Et-COOH muscular injection would be considerable design for pDNA carriers in vivo.


Assuntos
Técnicas de Transferência de Genes , Polietilenoimina , DNA , Plasmídeos/genética , Transfecção
20.
J Control Release ; 329: 1037-1045, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33080271

RESUMO

Safe and efficient gene therapy for the treatment of Duchenne muscular dystrophy (DMD), a genetic disorder, is required. For this, the muscle-targeting delivery system of genes and nucleic acids is ideal. In this study, we focused on the A2G80 peptide, which has an affinity for α-dystroglycan expressed on muscle cell membranes, as a muscle targeted nanocarrier for DMD and developed A2G80-modified liposomes. We also prepared A2G80-modified liposomes coated with long- and short-chain PEG, called A2G80-LSP-Lip, to improve the blood circulation of liposomes using microfluidics. The liposomes had a particle size of approximately 80 nm. A2G80-LSP-Lip showed an affinity for the muscle tissue section of mice by overlay assay. When the liposomes were administered to DMD model mice (mdx mice) via the tail vein, A2G80-LSP-Lip accumulated efficiently in muscle tissue compared to control liposomes. These results suggest that A2G80-LSP-Lip can function as a muscle-targeting liposome for DMD via systemic administration, and may be a useful tool for DMD treatment.


Assuntos
Distrofia Muscular de Duchenne , Animais , Modelos Animais de Doenças , Distroglicanas , Lipossomos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético , Músculos , Distrofia Muscular de Duchenne/tratamento farmacológico , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA