Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(5): 636-643, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37037962

RESUMO

Covalent organic frameworks (COFs) are emerging crystalline porous polymers, showing great potential for applications but lacking gas-triggered flexibility. Atropisomerism was experimentally discovered in 1922 but has rarely been found in crystals with infinite framework structures. Here we report atropisomerism in COF single crystals. The obtained COF atropisomers, namely COF-320 and COF-320-A, have identical chemical and interpenetrated structures but differ in the spatial arrangement of repeating units. In contrast to the rigid COF-320 structure, its atropisomer (COF-320-A) exhibits unconventional gas sorption behaviours with one or more sorption steps in isotherms at different temperatures. Single-crystal structures determined from continuous rotation electron diffraction and in situ powder X-ray diffraction demonstrate that these adsorption steps originate from internal pore expansion with or without changing the crystal space group. COF-320-A recognizes different gases by expanding its internal pores continuously (crystal-to-amorphous transition) or discontinuously (crystal-to-crystal transition) or having mixed transition styles, distinguishing COF-320-A from existing soft/flexible porous crystals. These findings extend atropisomerism from molecules to crystals and propel COFs into the covalently linked soft porous crystal regime, further advancing applications of soft porous crystals in gas sorption, separation and storage.

2.
Small ; 17(22): e2006150, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33690969

RESUMO

Electrochemical reduction of CO2 in aqueous media is an important reaction to produce value-added carbon products in an environmentally and economically friendly manner. Various molecule-based catalytic systems for the reaction have been reported thus far. The key features of state-of-the-art catalytic systems in this field can be summarized as follows: 1) an iron-porphyrin-based scaffold as a catalytic center, 2) a dinuclear active center for the efficient activation of a CO2 molecule, and 3) a hydrophobic channel for the accumulation of CO2 . This article reports a novel approach to construct a catalytic system for CO2 reduction with the aforementioned three key substructures. The self-assembly of a newly designed iron-porphyrin complex bearing bulky substituents with noncovalent interaction ability forms a highly ordered crystalline solid with adjacent catalytically active sites and hydrophobic pores. The obtained crystalline solid serves as an electrocatalyst for CO2 reduction in aqueous media. Note that a relevant iron-porphyrin complex without bulky substituents cannot form a porous structure with adjacent active sites, and the catalytic performance of the crystals of this relevant iron-porphyrin complex is substantially lower than that of the newly developed catalytic system. The present study provides a novel strategy for constructing porous crystalline solids for small-molecule conversions.


Assuntos
Ferro , Porfirinas , Dióxido de Carbono , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA