Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plants (Basel) ; 13(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999685

RESUMO

Gray mold, caused by Botrytis cinerea Pers. Fr., is one of the most vital plant diseases, causing extensive pre- and post-harvest losses in apple fruits. In the current study, we isolated and identified two potential endophytic bioagents, Bacillus subtilis and Streptomyces endus. Both bioagents exhibited a potent fungistatic effect against B. cinerea under both in vitro and in planta conditions. Moreover, two experiments were carried out; (i) the first experiment was conducted at room temperature after artificial inoculation with B. cinerea to monitor the progression of the infection and the corresponding biochemical responses of the apples. Our in vivo findings showed that the treated B. cinerea-infected apple fruits with the cell-free bacterial filtrate of B. subtilis and S. endus (dipping or wrapping) significantly reduced the rotten area of the treated apple at room temperature. Additionally, B. subtilis and S. endus enhanced the enzymatic (POX and PPO) and non-enzymatic (phenolics and flavonoids) antioxidant defense machinery in treated apples. (ii) The second experiment focused on the preventive effects of both bioagents over a 90-day storage period at 1 °C of healthy apples (no artificial inoculation). The application of both bacterial filtrates prolonged the storage period, reduced the relative weight loss, and maintained high-quality parameters including titratable acidity, firmness, and total soluble solids of apple fruits under cold storage at 1 °C. The Kaplan-Meier analysis of rotten apples over 90 days during cold storage showed that the treated apples lasted longer than the non-treated apples. Moreover, the lifespan of apple fruits dipped in the culture filtrate of B. subtilis, or a fungicide, was increased, with no significant differences, compared with the non-treated apples. The current results showed the possibility of using both bioagents as a safe and eco-friendly alternative to chemical fungicides to control gray mold disease in apples.

2.
Plant Dis ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902884

RESUMO

Heart rot disease, caused by Lasiodiplodia theobromae, is destructive for date palms and other woody plants. The disease was reported in several oasis in Egypt, and the pathogen was found in association with infected trees suffering die-back and rachis blight. Seven phylogenetically distinct fungal isolates were selected, and their pathogenicity was confirmed on date palms. The isolates exhibited variable degrees of virulence on inoculated leaves, which confirms the variation. We examined the antifungal effect of microbial bioagents and plant extracts on heart rot disease. The isolates of Trichoderma spp. gave moderate reduction of the pathogen's linear growth (40-60%), while their exudates were ultimately ineffective. Bacillus spp. isolates, except for B. megaterium, were more effective against spore germination as they gave 80-90% reduction on average. Among the examined plant extracts garlic sap gave 98.67% reduction of linear growth followed by artemisia (15.5%) and camphor (24.8%). The extraction methods greatly influenced the antifungal efficiency of each extract as exposure to organic solvents significantly decreased the efficiency of all extracts, while hot water extraction negatively affected garlic sap only. Successful bioagents and plant extracts were further assayed for the suppression of heart rot disease on date palms. Both T. album and T. harzianum gave comparable degrees of suppression as by commercial fungicides. In addition, treatment before or during pathogen inoculation was the most effective as it significantly enhanced the expression of defense-related enzymes. Our findings suggest bio-pesticides possessing a dual role in disease suppression and defense boosters for date palms suffering heart rot disease.

3.
Front Plant Sci ; 15: 1385785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711604

RESUMO

White mold, caused by the necrotrophic fungus Sclerotinia sclerotiorum, is a challenging disease to common bean cultivation worldwide. In the current study, two non-proteinogenic amino acids (NPAAs), γ-aminobutyric acid (GABA) and ß-alanine, were suggested as innovative environmentally acceptable alternatives for more sustainable management of white mold disease. In vitro, GABA and ß-alanine individually demonstrated potent dose-dependent fungistatic activity and effectively impeded the radial growth and development of S. sclerotiorum mycelium. Moreover, the application of GABA or ß-alanine as a seed treatment followed by three root drench applications efficiently decreased the disease severity, stimulated plant growth, and boosted the content of photosynthetic pigments of treated S. sclerotiorum-infected plants. Furthermore, although higher levels of hydrogen peroxide (H2O2), superoxide anion (O2 •-), and malondialdehyde (MDA) indicated that S. sclerotiorum infection had markedly triggered oxidative stress in infected bean plants, the exogenous application of both NPAAs significantly reduced the levels of the three studied oxidative stress indicators. Additionally, the application of GABA and ß-alanine increased the levels of both non-enzymatic (total soluble phenolics and flavonoids), as well as enzymatic (catalase [CAT], peroxidases [POX], and polyphenol oxidase [PPO]) antioxidants in the leaves of S. sclerotiorum-infected plants and improved their scavenging activity and antioxidant efficiency. Applications of GABA and ß-alanine also raised the proline and total amino acid content of infected bean plants. Lastly, the application of both NPAAs upregulated the three antioxidant-related genes PvCAT1, PvCuZnSOD1, and PvGR. Collectively, the fungistatic activity of NPAAs, coupled with their ability to alleviate oxidative stress, enhance antioxidant defenses, and stimulate plant growth, establishes them as promising eco-friendly alternatives for white mold disease management for sustainable bean production.

4.
Plants (Basel) ; 12(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960112

RESUMO

Huanglongbing (HLB; also known as citrus greening) is the most destructive bacterial disease of citrus worldwide with no known sustainable cure yet. Herein, we used non-targeted metabolomics and transcriptomics to prove that γ-aminobutyric acid (GABA) accumulation might influence the homeostasis of several metabolic pathways, as well as antioxidant defense machinery, and their metabolism-related genes. Overall, 41 metabolites were detected in 'Valencia' sweet orange (Citrus sinensis) leaf extract including 19 proteinogenic amino acids (PAA), 10 organic acids, 5 fatty acids, and 9 other amines (four phenolic amines and three non-PAA). Exogenous GABA application increased most PAA in healthy (except L-threonine, L-glutamine, L-glutamic acid, and L-methionine) and 'Candidatus L. asiaticus'-infected citrus plants (with no exception). Moreover, GABA accumulation significantly induced L-tryptophan, L-phenylalanine, and α-linolenic acid, the main precursors of auxins, salicylic acid (SA), and jasmonic acid (JA), respectively. Furthermore, GABA supplementation upregulated most, if not all, of amino acids, phenolic amines, phytohormone metabolism-related, and GABA shunt-associated genes in both healthy and 'Ca. L. asiaticus'-infected leaves. Moreover, although 'Ca. L. asiaticus' induced the accumulation of H2O2 and O2•- and generated strong oxidative stress in infected leaves, GABA possibly stimulates the activation of a multilayered antioxidative system to neutralize the deleterious effect of reactive oxygen species (ROS) and maintain redox status within infected leaves. This complex system comprises two major components: (i) the enzymatic antioxidant defense machinery (six POXs, four SODs, and CAT) that serves as the front line in antioxidant defenses, and (ii) the non-enzymatic antioxidant defense machinery (phenolic acids and phenolic amines) that works as a second defense line against 'Ca. L. asiaticus'-induced ROS in citrus infected leaves. Collectively, our findings suggest that GABA might be a promising alternative eco-friendly strategy that helps citrus trees battle HLB particularly, and other diseases in general.

5.
Plants (Basel) ; 12(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896110

RESUMO

The devastating citrus disease, Huanglongbing (HLB), is associated with 'Candidatus Liberibacter sp.' and transmitted by citrus psyllids. Unfortunately, HLB has no known sustainable cure yet. Herein, we proposed γ-aminobutyric acid (GABA) as a potential eco-friendly therapeutic solution to HLB. Herein, we used GC/MS-based targeted metabolomics combined with gene expression to investigate the role of GABA in citrus response against HLB and to better understand its relationship(s) with different phytohormones. GABA supplementation via root drench boosts the accumulation of endogenous GABA in the leaves of both healthy and 'Ca. L. asiaticus'-infected trees. GABA accumulation benefits the activation of a multi-layered defensive system via modulating the phytohormone levels and regulating the expression of their biosynthesis genes and some pathogenesis-related proteins (PRs) in both healthy and 'Ca. L. asiaticus'-infected plants. Moreover, our findings showed that GABA application stimulates auxin biosynthesis in 'Ca. L. asiaticus'-infected plants via the activation of the indole-3-pyruvate (I3PA) pathway, not via the tryptamine (TAM)-dependent pathway, to enhance the growth of HLB-affected trees. Likewise, GABA accumulation was associated with the upregulation of SA biosynthesis genes, particularly the PAL-dependent route, resulting in higher SA levels that activated CsPR1, CsPR2, CsPR5, and CsWRKY70, which are prominent to activation of the SA-mediated pathway. Additionally, higher GABA levels were correlated with an enhanced JA profile and linked with both CsPR3 and CsPR4, which activates the JA-mediated pathway. Collectively, our findings suggest that exogenous GABA application might be a promising alternative and eco-friendly strategy that helps citrus trees battle HLB.

6.
Front Plant Sci ; 14: 1216782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655220

RESUMO

Introduction: Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastative diseases that threatens rice plants worldwide. Biosynthesized nanoparticle (NP) composite compounds have attracted attention as environmentally safe materials that possess antibacterial activity that could be used in managing plant diseases. Methods: During this study, a nanocomposite of two important elements, nickel and silicon, was biosynthesized using extraction of saffron stigmas (Crocus sativus L.). Characterization of obtained nickel-silicon dioxide (Ni-SiO2) nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission/Scanning electron microscopy (TEM/SEM), and energy-dispersive spectrum (EDS). Antibacterial activities of the biosynthesized Ni-SiO2 nanocomposite against Xoo were tested by measuring bacterial growth, biofilm formation, and dead Xoo cells. Results and discussions: The bacterial growth (OD600) and biofilm formation (OD570) of Xoo treated with distilled water (control) was found to be 1.21 and 1.11, respectively. Treatment with Ni-SiO2 NPs composite, respectively, reduced the growth and biofilm formation by 89.07% and 80.40% at 200 µg/ml. The impact of obtained Ni-SiO2 nanocomposite at a concentration of 200 µg/ml was assayed on infected rice plants. Treatment of rice seedlings with Ni-SiO2 NPs composite only had a plant height of 64.8 cm while seedlings treated with distilled water reached a height of 45.20 cm. Notably, Xoo-infected seedlings treated with Ni-SiO2 NPs composite had a plant height of 57.10 cm. Furthermore, Ni-SiO2 NPs composite sprayed on inoculated seedlings had a decrease in disease leaf area from 43.83% in non-treated infected seedlings to 13.06% in treated seedlings. The FTIR spectra of biosynthesized Ni-SiO2 nanocomposite using saffron stigma extract showed different bands at 3,406, 1,643, 1,103, 600, and 470 cm-1. No impurities were found in the synthesized composite. Spherically shaped NPs were observed by using TEM and SEM. EDS revealed that Ni-SiO2 nanoparticles (NPs) have 13.26% Ni, 29.62% Si, and 57.11% O. Xoo treated with 200 µg/ml of Ni-SiO2 NPs composite drastically increased the apoptosis of bacterial cells to 99.61% in comparison with 2.23% recorded for the control. Conclusions: The application of Ni-SiO2 NPs significantly improved the vitality of rice plants and reduced the severity of BLB.

8.
Foods ; 12(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238841

RESUMO

Ras cheese is one of the main hard cheeses in Egypt and is well-known worldwide. Herein, we investigated the potential effects of different coating techniques on the physico-chemical characteristics, sensory properties, and aroma-related volatile organic compounds (VOCs) of Ras cheese over a six-month ripening period. Four coating techniques were tested, including (I) uncoated Ras cheese (the benchmark control), (II) Ras cheese coated with paraffin wax (T1), (III) Ras cheese coated with a plastic film under a vacuum (PFUV; T2), and (IV) Ras cheese coated with a plastic film treated with natamycin (T3). Although none of the treatments significantly affected the salt content, Ras cheese coated with a plastic film treated with natamycin (T3) slightly reduced the moisture content over the ripening period. Moreover, our findings revealed that while T3 had the highest ash content, it showed the same positive correlation profiles of fat content, total nitrogen, and acidity % as the control cheese sample, indicating no significant effect on the physico-chemical characteristics of the coated cheese. Furthermore, there were significant differences in the composition of VOCs among all tested treatments. The control cheese sample had the lowest percentage of other VOCs. T1 cheese, coated with paraffin wax, had the highest percentage of other volatile compounds. T2 and T3 were quite similar in their VOC profiles. According to our GC-MS findings, thirty-five VOCs were identified in Ras cheese treatments after six months of ripening, including twenty-three fatty acids, six esters, three alcohols, and three other compounds identified in most treatments. T2 cheese had the highest fatty acid % and T3 cheese had the highest ester %. The development of volatile compounds was affected by the coating material and the ripening period of the cheeses, which played a major role in the quantity and quality of volatile compounds.

9.
Foods ; 12(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37174391

RESUMO

Ras cheese is the main Egyptian hard cheese that is well-known worldwide. Herein, we investigated how different salting techniques affect the physio-chemical properties, sensory properties, and volatile compounds of Ras cheese over a six-month ripening period. Five Ras cheese treatments were made from pasteurized cow's milk using various salting techniques: traditional salting of Ras cheese, salting by applying all of the salt to the curd after the entire whey drainage, salting by applying all of the salt to the curd after half to two-thirds of the whey drainage, salting in a brine solution for 24 h without dry salting, and salting in a brine solution for 12 h and then dry salting. The obtained results by GC-MS recorded that thirty-eight volatile compounds were identified in Ras cheese treatments after six months of ripening, and the development of volatile compounds was affected by the salting technique as well as the ripening period of the cheeses, which played a major role in the type and concentration of volatile compounds. Results revealed that there are six esters, 15 fatty acids, five ketones, two aldehydes, four alcohols, and eight other compounds identified in most treatments. Some physio-chemical characteristics and sensory properties were found to have high correlations with the storage period, while some others have low correlations during the ripening period.

10.
Plants (Basel) ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176833

RESUMO

The important vegetable crop, tomato, is challenged with numerous abiotic and biotic stressors, particularly the newly emerged fungicide-resistant strains of phytopathogenic fungi such as Alternaria alternata, the causal agent of early blight disease. The current study investigated the potential antifungal activity of four cinnamate derivatives including cinnamic acid, ρ-coumaric acid, caffeic acid, and ferulic acid against A. alternata. Our in vitro findings showed that all tested compounds exhibited dose-dependent fungistatic action against A. alternata when their concentrations were increased from 0.1, 0.3, 0.5, and 0.7, to 0.9 mM, respectively. The high concentration of ferulic acid (0.9 mM) completely inhibited the radial mycelial growth of A. alternata and it was comparable to the positive control (difenoconazole fungicide). Additionally, under greenhouse conditions, foliar application of the four tested cinnamates significantly reduced the severity of early blight disease without any phytotoxicity on treated tomato plants. Moreover, it significantly improved the growth traits (plant height, total leaf area, number of leaves per plant, and shoot fresh weight), total chlorophyll, and yield components (number of flowers per plant, number of fruits per plant, and fruit yield) of treated A. alternata-infected plants. Collectively, our findings suggest that cinnamate derivatives could be good candidates as eco-friendly alternatives to reduce the use of chemical fungicides against A. alternata.

11.
Plants (Basel) ; 12(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37176885

RESUMO

Soil and water salinity are among the most fatal environmental challenges that threaten agricultural production worldwide. This study investigated the potential impact(s) of soil amendment using composted bagasse and/or foliar application of cyanobacteria-based bio-stimulants (Arthrospira platensis, also known as Spirulina platensis) to combat the harmful effect(s) of using saline water to irrigate barley plants grown in salt-affected soils during 2020/2021 and 2021/2022. Briefly, the dual application of composted bagasse and cyanobacteria-based bio-stimulants significantly improved the soil properties, buffered the exchangeable sodium percentage (ESP), and enhanced the activity of soil enzymes (urease and dehydrogenase). Moreover, both treatments and their combination notably augmented the water relations of barley plants under salinity stress. All treatments significantly decreased stomatal conductance (gs) and relative water content (RWC) but increased the electrolyte leakage (EL) and balanced the contents of Na+ and K+, and their ratio (K+/Na+) of barley leaves under salinity stress compared with those irrigated with fresh water during the 2020/2021 and 2021/2022 seasons. Additionally, composted bagasse and cyanobacteria-based bio-stimulants diminished the oxidative stress in barley plants under salinity stress by improving the activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX). Consequently, the combination of composted bagasse and cyanobacteria extract resulted in superior yield-related traits such as spike length, number of grains per spike, 1000-grain weight, grain yield, straw yield, and harvest index. Collectively, our findings suggest that the integrative application of composted bagasse and cyanobacteria is promising as a sustainable environmental strategiy that can be used to improve soil properties, plant growth, and productivity of not only barley plants but also maybe other cereal crops irrigated with saline water in salt-affected soil.

12.
J Fungi (Basel) ; 9(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36836358

RESUMO

Sweet pepper (Capsicum annuum L.), also known as bell pepper, is one of the most widely grown vegetable crops worldwide. It is attacked by numerous phytopathogenic fungi, such as Fusarium equiseti, the causal agent of Fusarium wilt disease. In the current study, we proposed two benzimidazole derivatives, including 2-(2-hydroxyphenyl)-1-H benzimidazole (HPBI) and its aluminum complex (Al-HPBI complex), as potential control alternatives to F. equiseti. Our findings showed that both compounds demonstrated dose-dependent antifungal activity against F. equiseti in vitro and significantly suppressed disease development in pepper plants under greenhouse conditions. According to in silico analysis, the F. equiseti genome possesses a predicted Sterol 24-C-methyltransferase (FeEGR6) protein that shares a high degree of homology with EGR6 from F. oxysporum (FoEGR6). It is worth mentioning that molecular docking analysis confirmed that both compounds can interact with FeEGR6 from F. equiseti as well as FoEGR6 from F. oxysporum. Moreover, root application of HPBI and its aluminum complex significantly enhanced the enzymatic activities of guaiacol-dependent peroxidases (POX), polyphenol oxidase (PPO), and upregulated four antioxidant-related enzymes, including superoxide dismutase [Cu-Zn] (CaSOD-Cu), L-ascorbate peroxidase 1, cytosolic (CaAPX), glutathione reductase, chloroplastic (CaGR), and monodehydroascorbate reductase (CaMDHAR). Additionally, both benzimidazole derivatives induced the accumulation of total soluble phenolics and total soluble flavonoids. Collectively, these findings suggest that the application of HPBI and Al-HPBI complex induce both enzymatic and nonenzymatic antioxidant defense machinery.

13.
Plants (Basel) ; 11(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36501297

RESUMO

Powdery mildew disease, caused by Erysiphe betae, is one of the most threatening diseases on sugar beet plants worldwide. It causes a great loss in the root yield, sugar percentage, and quality of produced sugar. In the current study, we aimed to evaluate the susceptibility of 25 sugar beet cultivars to infection with powdery mildew disease under Egyptian conditions. Moreover, we evaluated the impacts of three eco-friendly materials, including potassium bicarbonate (KHCO3; at 5 and 10 g L-1), Moringa oleifera seed extract (25 and 50 g L-1), and the biocontrol agent, Bacillus subtilis (108 cell suspension) against E. betae in two successive seasons 2020 and 2021. Our findings showed that there were significant differences between these 25 cultivars in their susceptibility to the disease under study. Using the detached leaves technique in vitro, B. subtilis showed strong antifungal activity against E. betae. Moreover, both concentrations of KHCO3 and moringa seed extract significantly reduced the disease severity. Under field conditions, tested treatments significantly reduced the severity of powdery mildew disease and prevented E. betae from producing its conidiophores and conidia. Scanning electron microscope examination of treated leaves demonstrated the presence of the decomposition of fungal hyphae, conidiophores, conidia, and the occurrence of plasmolysis to fungal cells and spores on the surface of the leaves. Furthermore, these treatments greatly improved the percent of sucrose and soluble solids content, as well as the enzymatic activity of peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase. It is noteworthy that treatment with moringa seed extract gave the best results, followed by potassium bicarbonate, then B. subtilis cell suspension. Generally, it is recommended to use the substances used in this research to combat powdery mildew to minimize or prevent the use of chemical fungicides harmful to public health and the environment.

14.
Plants (Basel) ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432846

RESUMO

Combined stressors (high soil salinity and saline water irrigation) severely reduce plant growth and sugar beet yield. Seed inoculation with plant growth-promoting rhizobacteria (PGPR) and/or foliar spraying with silica nanoparticles (Si-NP) is deemed one of the most promising new strategies that have the potential to inhibit abiotic stress. Herein, sugar beet (Beta vulgaris) plants were treated with two PGPR (Pseudomonas koreensis MG209738 and Bacillus coagulans NCAIM B.01123) and/or Si-NP, during two successive seasons 2019/2020 and 2020/2021 to examine the vital role of PGPR, Si-NP, and their combination in improving growth characteristics, and production in sugar beet plants exposed to two watering treatments (fresh water and saline water) in salt-affected soil. The results revealed that combined stressors (high soil salinity and saline water irrigation) increased ion imbalance (K+/Na+ ratio; from 1.54 ± 0.11 to 1.00 ± 0.15) and declined the relative water content (RWC; from 86.76 ± 4.70 to 74.30 ± 3.20%), relative membrane stability index (RMSI), stomatal conductance (gs), and chlorophyll content, which negatively affected on the crop productivity. Nevertheless, the application of combined PGPR and Si-NP decreased oxidative stress indicators (hydrogen peroxide and lipid peroxidation) and sodium ions while increasing activities of superoxide dismutase (SOD; up to 1.9-folds), catalase (CAT; up to 1.4-folds), and peroxidase (POX; up to 2.5-folds) enzymes, and potassium ions resulting in physiological processes, root yield, and sugar yield compared to non-treated controls under combined stressors (high soil salinity and saline water irrigation). It is worth mentioning that the singular application of PGPR improved root length, diameter, and yield greater than Si-NP alone and it was comparable to the combined treatment (PGPR+Si-NP). It was concluded that the combined application of PGPR and Si-NP has valuable impacts on the growth and yield of sugar beet growing under combined stressors of high soil salinity and saline water irrigation.

15.
J Fungi (Basel) ; 8(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36294606

RESUMO

Wheat stem rust caused by Puccinia graminis f. sp. tritici is one of the most destructive wheat diseases worldwide. Identifying stem rust races in general, Ug99 lineage particularly, and determining resistance genes are critical goals for disease assessment. Thirty wheat varieties and monogenic lines with major stem rust resistance genes (Sr) were examined here over the course of three succeeding seasons from 2020 to 2022. Fourteen stem rust races have been identified in ten African countries, as well as Central and West Asia and North Africa (CWANA) and ten European countries. The Ug99 group (Clade I) included four races (TTKSK, TTKST, TTKTK, and TTKTT) and was reported in five African countries (Egypt, Kenya, Rwanda, Tanzania, and Uganda) and Iran, but none of the European countries. On the other hand, none of the races in Clade III-B (TTRTF) and Clade IV-B (TKTTF and TTTTF) were found in Egypt. Furthermore, Egyptian races were clustered separately from races identified from other countries, and six races were found only in Egypt, including PKSTC, RKTTH, TKTTC, TTTSK, TCKTC, and TKTTH. Races from Kenya, Tanzania, Uganda, Rwanda, and Iran were all closely associated with one another, according to correlation analysis. However, most races identified from other investigated regions, including Eritrea, Spain, Ethiopia, Morocco, Italy, Poland, Kenya, Tanzania, and Uganda, were adversely linked with Egyptian races. The diagnostic 350 bp long PCR fragment linked with virulence to Sr31, Clement (Sr31), and Brigardier (Sr31) was used to identify the TTKSK (Ug99) race. The identification of the regional associations and genetic diversity of newly emerged races within the Ug99 lineage of P. graminis tritici in Africa, Asia, and Europe is one of the key goals of this study. It will help plant breeders to develop new resistant lines against the virulent races, especially TTKSK (Ug99) and TTTSK. This helps in ensuring global food security in the context of climate change.

16.
Plants (Basel) ; 11(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145818

RESUMO

Sweet pepper (Capsicum annuum L.) is one of the most widely produced vegetable plants in the world. Fusarium wilt of pepper is one of the most dangerous soil-borne fungal diseases worldwide. Herein, we investigated the antifungal activities and the potential application of two chalcone derivatives against the phytopathogenic fungus, Fusarium equiseti, the causal agent of Fusarium wilt disease in vitro and in vivo. The tested compounds included 3-(4-dimethyl amino-phenyl)-1-{6-[3-(4 dimethyl amino-phenyl)-a cryloyl]-pyridin-2-yl}-propanone (DMAPAPP) and its metal complex with ruthenium III (Ru-DMAPAPP). Both compounds had potent fungistatic activity against F. equiseti and considerably decreased disease progression. The tested compounds enhanced the vegetative growth of pepper plants, indicating there was no phytotoxicity on pepper plants in greenhouse conditions. DMAPAPP and Ru-DMAPAPP also activated antioxidant defense mechanisms that are enzymatic, including peroxidase, polyphenole oxidase, and catalase, and non-enzymatic, such as total soluble phenolics and total soluble flavonoids. DMAPAPP and Ru-DMAPAPP also promoted the overexpression of CaCu-SOD and CaAPX genes. However, CaGR and CaMDHAR were downregulated. These results demonstrate how DMAPAPP and Ru-DMAPAPP could be employed as a long-term alternative control approach for Fusarium wilt disease as well as the physiological and biochemical mechanisms that protect plants.

17.
Plant Sci ; 323: 111401, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35905898

RESUMO

Citrus is a major fruit crop cultivated on a global scale. Citrus trees are long lived perennials with a large canopy. Understanding the genetic control of tree architecture could provide tools for breeding and selection of citrus cultivars suitable for high density planting with improved light exposure. Tree architecture is modulated by the TILLER ANGLE CONTROL 1 (TAC1) gene which plays an important role in the regulation of the shoot angle. Herein, we used CRISPR/Cas9 technology to knockout the CsTAC1 gene for the biochemical and molecular analysis of its function. Nine transgenic lines were obtained, and five edited plants were confirmed based on T7EI mismatch detection assay and Sanger sequencing. The transgenic citrus lines exhibited pleiotropic phenotypes, including differences in branch angle and stem growth. Additionally, silencing CsTAC1 led to enhanced CsLAZY1 transcript levels in the tested lines. Analysis of the phytohormonal profile revealed that TAC1-edited plants exhibited lower auxin contents and increased cytokinin levels in the leaves compared to the wild-type plants. The GA7 gibberellin level was enhanced in most of the edited lines. Collectively, TAC1 affects branch angle in association with hormone signals in citrus.


Assuntos
Citrus sinensis , Citrus , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Árvores/metabolismo
18.
J Fungi (Basel) ; 8(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35736109

RESUMO

The genus Aspergillus comprises several species that play pivotal roles in agriculture. Herein, we morphologically and physiologically characterized four genetically distinct Aspergillus spp., namely A. japonicus, A. niger, A. flavus, and A. pseudoelegans, and examined their ability to suppress the white mold disease of bean caused by Sclerotinia sclerotiorum in vitro and under greenhouse conditions. Seriation type of Aspergillus spp. correlates with conidiospores discharge as detected on the Petri glass lid. Members of Nigri section cover their conidial heads with hard shells after prolonged incubation. In addition, sporulation of the tested Aspergillus isolates is temperature sensitive as it becomes inhibited at low temperatures and the colonies become white. Examined Aspergillus spp. were neither infectious to legumes nor aflatoxigenic as confirmed by HPLC except for A. flavus and A. pseudoelegans which, secreted 5 and 1 ppm of aflatoxin B1, respectively. Co-inoculations of Sclerotinia's mycelium or sclerotia with a spore suspension of Aspergillus spp. inhibited their germination on PDA at 18 °C and 28 °C, and halted disease onset on detached common bean and soybean leaves. Similarly, plants treated with A. japonicus and A. niger showed the highest survival rates compared to untreated plants. In conclusion, black Aspergillus spp. are efficient biocides and safe alternatives for the management of plant diseases, particularly in organic farms.

19.
Chemosphere ; 296: 133773, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35114264

RESUMO

Phytopathogenic bacteria cause severe economic losses in agricultural production worldwide. The spread rates, severity, and emerging plant bacterial diseases have become serious threat to the sustainability of food sources and the fruit industry. Detection and diagnosis of plant diseases are imperative in order to manage plant diseases in field conditions, greenhouses, and food storage conditions as well as to maximize agricultural productivity and sustainability. To date, various techniques including, serological, observation-based, and molecular methods have been employed for plant disease detection. These methods are sensitive and specific for genetic identification of bacteria. However, these methods are specific for genetic identification of bacteria. Currently, the innovative biosensor-based disease detection technique is an attractive and promising alternative. A biosensor system involves biological recognition and transducer active receptors based on sensors used in plant-bacteria diagnosis. This system has been broadly used for the rapid diagnosis of plant bacterial pathogens. In the present review, we have discussed the conventional methods of bacterial-disease detection, however, the present review mainly focuses on the applications of different biosensor-based techniques along with point-of-care (POC), robotics, and cell phone-based systems. In addition, we have also discussed the challenges and limitations of these techniques.


Assuntos
Bactérias , Técnicas Biossensoriais , Bactérias/genética , Técnicas Biossensoriais/métodos , Doenças das Plantas , Plantas/microbiologia , Tecnologia
20.
Mol Plant Microbe Interact ; 35(3): 200-214, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34775834

RESUMO

Although the mitochondria retain all required enzymes for an intact tricarboxylic acid (TCA) cycle, plants might shift the cyclic flux from the TCA cycle to an alternative noncyclic pathway via γ-aminobutyric acid (GABA) shunt under specific physiological conditions. We hypothesize that several genes may ease this noncyclic flux and contribute to the citrus response to the phytopathogenic bacterium 'Candidatus Liberibacter asiaticus', the causal agent of Huanglongbing in citrus. To test this hypothesis, we used multiomics techniques (metabolomics, fluxomics, and transcriptomics) to investigate the potential roles of putative gab homologies from Valencia sweet orange (Citrus sinensis). Our findings showed that 'Ca. L. asiaticus' significantly increased the endogenous GABA and succinate content but decreased ketoglutarate in infected citrus plants. Citrus genome harbors three putative gab genes, including amino-acid permease (also known as GABA permease; CsgabP), GABA transaminase (CsgabT), and succinate-semialdehyde dehydrogenase (also known as GABA dehydrogenase; CsgabD). The transcript levels of CsgabP, CsgabT, and CsgabD were upregulated in citrus leaves upon the infection with 'Ca. L. asiaticus' and after the exogenous application of GABA or deuterium-labeled GABA isotope (GABA-D6). Moreover, our finding showed that exogenously applied GABA is quickly converted to succinate and fed into the TCA cycle. Likewise, the fluxomics study showed that GABA-D6 is rapidly metabolized to succinate-D4. Our work proved that GABA shunt and three predicated gab genes from citrus, support the upstream noncyclic flux toward succinate rather than an intact TCA cycle and contribute to citrus defense responses to 'Ca. L. asiaticus'.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Citrus , Rhizobiaceae , Citrus/microbiologia , Liberibacter , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Ácido Succínico , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA