Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(16): 6255-6263, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588398

RESUMO

Molecular Rotational Resonance (MRR) spectroscopy is a uniquely precise tool for the determination of molecular structures of volatile compounds in mixtures, as the characteristic rotational transition frequencies of a molecule are extremely sensitive to its 3D structure through the moments of inertia in a three-dimensional coordinate system. This enables identification of the compounds based on just a few parameters that can be calculated, as opposed to, for example, mass spectrometric data, which often require expert analysis of 10-20 different signals and the use of many standards/model compounds. This paper introduces a new sampling technique for MRR, laser-induced acoustic desorption (LIAD), to allow the vaporization of nonvolatile and thermally labile analytes without the need for excessive heating or derivatization. In this proof-of-concept study, LIAD was successfully coupled to an MRR instrument to conduct measurements on seven compounds with differing polarities, molecular weights, and melting and boiling points. Identification of three isomers in a mixture was also successfully performed using LIAD/MRR. Based on these results, LIAD/MRR is demonstrated to provide a powerful approach for the identification of nonvolatile and/or thermally labile analytes with molecular weights up to 600 Da in simple mixtures, which does not require the use of reference compounds. In the future, applications to more complex mixtures, such as those relevant to pharmaceutical research, and quantitative aspects of LIAD/MRR will be reported.

2.
Anal Sci Adv ; 4(5-6): 204-219, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38716067

RESUMO

Recent developments in molecular rotational resonance (MRR) spectroscopy that have enabled its use as an analytical technique for the precise determination of molecular structure are reviewed. In particular, its use in the differentiation of isomeric compounds-including regioisomers, stereoisomers and isotopic variants-is discussed. When a mixture of isomers, such as resulting from a chemical reaction, is analyzed, it is highly desired to be able to unambiguously identify the structures of each of the components present, as well as quantify them, without requiring complex sample preparation or reference standards. MRR offers unique capabilities for addressing this analytical challenge, owing to two factors: its high sensitivity to a molecule's structure and its high spectral resolution, allowing mixtures to be resolved without separation of components. This review introduces core theoretical principles, an introduction to MRR instrumentation and the methods by which spectra can be interpreted with the aid of computational chemistry to correlate the observed patterns to molecular structures. Recent articles are discussed in which this technique was applied to help chemists complete challenging isomer analyses. Developments in the use of MRR for chiral analysis and in the measurement of isotopically labeled compounds are also highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA