Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genetika ; 51(4): 466-78, 2015 Apr.
Artigo em Russo | MEDLINE | ID: mdl-26087622

RESUMO

Gene function disclosure and the development of modern technologies of genetic manipulations offered the possibility of genetic reprogramming application to alter cell specialization. With the involvement of a gene set that encodes the transcription factors responsible for the pluripotent state, any cell of an adult body could be reprogrammed into the embryonal.state and pluripotency could be induced in this cell. Such reprogrammed cells were called induced pluripotent stem cells (iPSCs), and they are capable of again passing through all developmental stages. This provides new possibilities for studies of the basic mechanisms of developmental biology, the formation of specific cell types, and the whole body. In culture, iPSCs could be maintained permanently in a nontransformed state and permit genetic manipulations while maintaining their pluripotent properties. Such a unique combination of their properties makes them an attractive tool for studies of various pathologies and for the delineation of treatment approaches. This review discusses the basic and applied aspects of iPSCs biology.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Técnicas de Cultura de Células , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição/genética
2.
Acta Naturae ; 5(2): 54-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23819036

RESUMO

Dosage compensation of the X chromosomes in mammals is performed via the formation of facultative heterochromatin on extra X chromosomes in female somatic cells. Facultative heterochromatin of the inactivated X (Xi), as well as constitutive heterochromatin, replicates late during the S-phase. It is generally accepted that Xi is always more compact in the interphase nucleus. The dense chromosomal folding has been proposed to define the late replication of Xi. In contrast to mouse pluripotent stem cells (PSCs), the status of X chromosome inactivation in human PSCs may vary significantly. Fluorescence in situ hybridization with a whole X-chromosome- specific DNA probe revealed that late-replicating Xi may occupy either compact or dispersed territory in human PSCs. Thus, the late replication of the Xi does not depend on the compactness of chromosome territory in human PSCs. However, the Xi reactivation and the synchronization in the replication timing of X chromosomes upon reprogramming are necessarily accompanied by the expansion of X chromosome territory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA