Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 187: 108660, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677085

RESUMO

OBJECTIVE: Aircraft noise exposure is linked to cardiovascular disease risk. One understudied candidate pathway is obesity. This study investigates the association between aircraft noise and obesity among female participants in two prospective Nurses' Health Study (NHS and NHSII) cohorts. METHODS: Aircraft day-night average sound levels (DNL) were estimated at participant residential addresses from modeled 1 dB (dB) noise contours above 44 dB for 90 United States (U.S.) airports in 5-year intervals 1995-2010. Biennial surveys (1994-2017) provided information on body mass index (BMI; dichotomized, categorical) and other individual characteristics. Change in BMI from age 18 (BMI18; tertiles) was also calculated. Aircraft noise exposures were dichotomized (45, 55 dB), categorized (<45, 45-54, ≥55 dB) or continuous for exposure ≥45 dB. Multivariable multinomial logistic regression using generalized estimating equations were adjusted for individual characteristics and neighborhood socioeconomic status, greenness, population density, and environmental noise. Effect modification was assessed by U.S. Census region, climate boundary, airline hub type, hearing loss, and smoking status. RESULTS: At baseline, the 74,848 female participants averaged 50.1 years old, with 83.0%, 14.8%, and 2.2% exposed to <45, 45-54, and ≥55 dB of aircraft noise, respectively. In fully adjusted models, exposure ≥55 dB was associated with 11% higher odds (95% confidence interval [95%CI]: -1%, 24%) of BMIs ≥30.0, and 15% higher odds (95%CI: 3%, 29%) of membership in the highest tertile of BMI18 (ΔBMI 6.7 to 71.6). Less-pronounced associations were observed for the 2nd tertile of BMI18 (ΔBMI 2.9 to 6.6) and BMI 25.0-29.9 as well as exposures ≥45 versus <45 dB. There was evidence of DNL-BMI trends (ptrends ≤ 0.02). Stronger associations were observed among participants living in the West, arid climate areas, and among former smokers. DISCUSSION: In two nationwide cohorts of female nurses, higher aircraft noise exposure was associated with higher BMI, adding evidence to an aircraft noise-obesity-disease pathway.


Assuntos
Aeronaves , Aeroportos , Índice de Massa Corporal , Exposição Ambiental , Humanos , Feminino , Estados Unidos , Estudos Prospectivos , Pessoa de Meia-Idade , Adulto , Exposição Ambiental/estatística & dados numéricos , Ruído dos Transportes/efeitos adversos , Ruído dos Transportes/estatística & dados numéricos , Obesidade/epidemiologia , Enfermeiras e Enfermeiros/estatística & dados numéricos
2.
Environ Epidemiol ; 7(4): e259, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37545808

RESUMO

There is limited research examining aircraft noise and cardiovascular disease (CVD) risk. The objective of this study was to investigate associations of aircraft noise with CVD among two US cohorts, the Nurses' Health Study (NHS) and Nurses' Health Study II (NHSII). Methods: Between 1994 and 2014, we followed 57,306 NHS and 60,058 NHSII participants surrounding 90 airports. Aircraft noise was modeled above 44 A-weighted decibels (dB(A)) and linked to geocoded addresses. Based on exposure distributions, we dichotomized exposures at 50 dB(A) and tested sensitivity of this cut-point by analyzing aircraft noise as categories (<45, 45-49, 50-54, ≥55) and continuously. We fit cohort-specific Cox proportional hazards models to estimate relationships between time-varying day-night average sound level (DNL) and CVD incidence and CVD and all-cause mortality, adjusting for fixed and time-varying individual- and area-level covariates. Results were pooled using random effects meta-analysis. Results: Over 20 years of follow-up, there were 4529 CVD cases and 14,930 deaths. Approximately 7% (n = 317) of CVD cases were exposed to DNL ≥50 dB(A). In pooled analyses comparing ≥50 with <50 dB(A), the adjusted hazard ratio for CVD incidence was 1.00 (95% confidence interval: 0.89, 1.12). The corresponding adjusted hazard ratio for all-cause mortality was 1.02 (95% confidence interval: 0.96, 1.09). Patterns were similar for CVD mortality in NHS yet underpowered. Conclusions: Among participants in the NHS and NHSII prospective cohorts who generally experience low exposure to aircraft noise, we did not find adverse associations of aircraft noise with CVD incidence, CVD mortality, or all-cause mortality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA