Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2892, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570492

RESUMO

Understanding causal relationships between evolution and ocean oxygenation hinges on reliable reconstructions of marine oxygen levels, typically from redox-sensitive geochemical proxies. Here, we develop a proxy, using dolomite U-Pb geochronology, to reconstruct seawater U/Pb ratios. Dolomite samples consistently give U-Pb dates and initial 207Pb/206Pb ratios lower than expected from their stratigraphic ages. These observations are explained by resetting of the U-Pb system long after deposition; the magnitude of deviations from expected initial 207Pb/206Pb are a function of the redox-sensitive U/Pb ratios during deposition. Reconstructed initial U/Pb ratios increased notably in the late-Paleozoic, reflecting an increase in oxygenation of marine environments at that time. This timeline is consistent with documented shifts in some other redox proxies and supports evolution-driven mechanisms for the oxygenation of late-Paleozoic marine environments, as well as suggestions that early animals thrived in oceans that on long time scales were oxygen-limited compared to today.

2.
Proc Natl Acad Sci U S A ; 120(30): e2301478120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459545

RESUMO

The geologically rapid appearance of fossils of modern animal phyla within Cambrian strata is a defining characteristic of the history of life on Earth. However, temporal calibration of the base of the Cambrian Period remains uncertain within millions of years, which has resulted in mounting challenges to the concept of a discrete Cambrian explosion. We present precise zircon U-Pb dates for the lower Wood Canyon Formation, Nevada. These data demonstrate the base of the Cambrian Period, as defined by both ichnofossil biostratigraphy and carbon isotope chemostratigraphy, was younger than 533 Mya, at least 6 My later than currently recognized. This new geochronology condenses previous age models for the Nemakit-Daldynian (early Cambrian) and, integrated with global records, demonstrates an explosive tempo to the early radiation of modern animal phyla.


Assuntos
Evolução Biológica , Madeira , Animais , Nevada , Fósseis , Isótopos de Carbono
3.
Geobiology ; 18(4): 486-496, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243705

RESUMO

Morphologically complex trace fossils, recording the infaunal activities of bilaterian animals, are common in Phanerozoic successions but rare in the Ediacaran fossil record. Here, we describe a trace fossil assemblage from the lower Dunfee Member of the Deep Spring Formation at Mount Dunfee (Nevada, USA), over 500 m below the Ediacaran-Cambrian boundary. Although millimetric in scale and largely not fabric-disruptive, the Dunfee assemblage includes complex and sediment-penetrative trace fossil morphologies that are characteristic of Cambrian deposits. The Dunfee assemblage records one of the oldest documented instances of sediment-penetrative infaunalization, corroborating previous molecular, ichnologic, and paleoecological data suggesting that crown-group bilaterians and bilaterian-style ecologies were present in late Ediacaran shallow marine ecosystems. Moreover, Dunfee trace fossils co-occur with classic upper Ediacaran tubular body fossils in multiple horizons, indicating that Ediacaran infauna and epifauna coexisted and likely formed stable ecosystems.


Assuntos
Evolução Biológica , Fósseis , Animais , Ecossistema , Nevada
4.
Nat Commun ; 11(1): 205, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924764

RESUMO

The fossil record of the terminal Ediacaran Period is typified by the iconic index fossil Cloudina and its relatives. These tube-dwellers are presumed to be primitive metazoans, but resolving their phylogenetic identity has remained a point of contention. The root of the problem is a lack of diagnostic features; that is, phylogenetic interpretations have largely centered on the only available source of information-their external tubes. Here, using tomographic analyses of fossils from the Wood Canyon Formation (Nevada, USA), we report evidence of recognizable soft tissues within their external tubes. Although alternative interpretations are plausible, these internal cylindrical structures may be most appropriately interpreted as digestive tracts, which would be, to date, the earliest-known occurrence of such features in the fossil record. If this interpretation is correct, their nature as one-way through-guts not only provides evidence for establishing these fossils as definitive bilaterians but also has implications for the long-debated phylogenetic position of the broader cloudinomorphs.


Assuntos
Abdome/anatomia & histologia , Anelídeos/anatomia & histologia , Cnidários/anatomia & histologia , Fósseis , Animais , Anelídeos/classificação , Evolução Biológica , Cnidários/classificação , Sedimentos Geológicos , Nevada , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA