Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Death Differ ; 20(12): 1698-708, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24013722

RESUMO

Somatic cells can be converted into induced pluripotent stem cells (iPSCs) by forced expression of various combinations of transcription factors, but the molecular mechanisms of reprogramming are poorly understood. Specifically, evidence that the reprogramming process can take many distinct routes only begins to emerge. It is definitively established that p53 deficiency greatly enhances reprogramming, revealing p53's barrier function for induced pluripotency, but the role of its homologs p63 and p73 are unknown. Here we report that in stark contrast to p53, p73 has no role in reprogramming. However, p63 is an enabling (rather than a barrier) factor for Oct4, Sox2 and Klf4 (OSK) and Oct4 and Sox2 (OS), but not for Oct4 and Klf4 (OK) reprogramming of mouse embryonic fibroblasts. Specifically, p63 is essential during reprogramming for maximum efficiency, albeit not for the ability to reprogram per se, and is dispensable for maintaining stability and pluripotency of established iPSC colonies. ΔNp63, but not TAp63, is the principal isoform involved. Loss of p63 can affect reprogramming via several mechanisms such as reduced expression of mesenchymal-epithelial transition and pluripotency genes, hypoproliferation and loss of the most reprogrammable cell populations. During OSK and OS reprogramming, different mechanisms seem to be critical, such as regulation of epithelial and pluripotency genes in OSK reprogramming versus regulation of proliferation in OS reprogramming. Finally, our data reveal three different routes of reprogramming by OSK, OS or OK, based on their differential p63 requirements for iPSC efficiency and pluripotency marker expression. This supports the concept that many distinct routes of reprogramming exist.


Assuntos
Reprogramação Celular , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Animais , Proliferação de Células , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Fosfoproteínas/deficiência , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transativadores/deficiência , Regulação para Cima
2.
Cell Death Differ ; 19(8): 1268-76, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22539002

RESUMO

Ectopic expression of defined sets of transcription factors in somatic cells enables them to adopt the qualities of pluripotency. Mouse embryonic fibroblasts (MEFs) are the classic target cell used to elucidate the core principles of nuclear reprogramming. However, their phenotypic and functional heterogeneity represents a major hurdle for mechanistic studies aimed at defining the molecular nature of cellular plasticity. We show that reducing the complexity of MEFs by flow cytometry allows the isolation of discrete cell subpopulations that can be efficiently reprogrammed to pluripotency with fewer genes. Using these FACS-sorted cells, we performed a systematic side-by-side analysis of the reprogramming efficiency with different two- and three-factor combinations of Oct4, Sox2 and Klf4. We show that introduction of exogenous Oct4 with either Sox2 or Klf4 does not directly convert MEFs to a pluripotent state. Instead, each combination of factors disrupts the normal cellular homeostasis and establishes transient states characterized by the concurrent expression of mixed lineage markers. These cells convert into induced pluripotent stem cells in a stochastic fashion. Our data suggest that there is a partial functional redundancy between Sox2 and Klf4 in the disruption of cellular homeostasis and activation of regulatory networks that define pluripotency.


Assuntos
Reprogramação Celular/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/fisiologia , Animais , Diferenciação Celular/fisiologia , Reprogramação Celular/genética , Perfilação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXB1/biossíntese , Fatores de Transcrição SOXB1/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Transfecção/métodos
3.
Cell Death Differ ; 15(9): 1440-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18451867

RESUMO

It is widely accepted that adenoviral E1A exerts its influence on recipient cells through binding to the retinoblastoma (Rb) family proteins, followed by a global release of E2F factors from pocket-protein control. Our study challenges this simple paradigm by demonstrating previously unappreciated complexity. We show that E1A-expressing primary and transformed cells are characterized by the persistence of Rb-E2F1 complexes. We provide evidence that E1A causes Rb stabilization by interfering with its proteasomal degradation. Functional experiments supported by biochemical data reveal not only a dramatic increase in Rb and E2F1 protein levels in E1A-expressing cells but also demonstrate their activation throughout the cell cycle. We further show that E1A activates an Rb- and E2F1-dependent S-phase checkpoint that attenuates the growth of cells that became hyperploid through errors in mitosis and supports the fidelity DNA replication even in the absence of E2F complexes with other Rb family proteins, thereby functionally substituting for the loss of p53. Our results support the essential role of Rb and E2F1 in the regulation of genomic stability and DNA damage checkpoints.


Assuntos
Proteínas E1A de Adenovirus/metabolismo , Proteína do Retinoblastoma/fisiologia , Fase S , Adenoviridae/fisiologia , Animais , Linhagem Celular , Transformação Celular Viral , Células Cultivadas , Cromatina/metabolismo , Dano ao DNA , Diploide , Fase G1 , Instabilidade Genômica , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína do Retinoblastoma/metabolismo
5.
Tumour Biol ; 22(2): 59-66, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11125276

RESUMO

Most p53 mutations occur in the central part of the p53 gene that codes for the DNA-binding domain. Missense mutations are prevalent. However, 10-25% of all mutations occur outside exons 5-8 and include a prevalence of frameshift, nonsense and splice site mutations. Functional analysis of p53 transactivation ability in yeast (FASAY) was used to screen for p53 mutations in tumors and a mutant p53 protein retaining partial activity was identified. We characterized this somatic p53 mutation in codon 337: transition C-->T, changing codon CGC to TGC and causing substitution of arginine for cysteine in exon 10, which codes for the tetramerization domain of p53. We detected high accumulation of this mutant p53 protein within the tumor tissue and found that it cannot be immunoprecipitated by either a wild-type p53-specific antibody (PAb1620) or by a mutant p53-specific antibody (PAb240). We confirmed the somatic origin of the mutation by analysis of p53 status in peripheral leukocytes.


Assuntos
Neoplasias da Mama/genética , Genes p53 , Mutação , Alelos , Códon , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Leucócitos/metabolismo , Pessoa de Meia-Idade , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Testes de Precipitina , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Leveduras/genética
6.
J Leukoc Biol ; 66(6): 1039-48, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10614788

RESUMO

The v-myb oncogene of avian myeloblastosis virus causes acute monoblastic leukemia in vivo and transforms myelomonocytic cells in culture. Retinoids are potent regulators of proliferation and differentiation in various cell types, and they can initiate differentiation in certain types of leukemic cells. However, the BM2 v-myb-transformed chicken monoblastic cell line is resistant to retinoic acid treatment. We found that overexpression of the retinoid X receptor confers sensitivity of BM2 cells to retinoic acid, resulting in induction of growth arrest and terminal differentiation. In contrast, the frequency of apoptosis was not affected by the retinoid X receptor in this cell type. We also demonstrated that suppression of transformation by v-Myb results from the negative effect of retinoid X receptor on v-Myb transactivation function, similar to that previously described for the retinoic acid receptor. The retinoid X receptor-induced inhibition of transactivation by v-Myb seems to be enhanced by a cell type-specific factor(s), which is not required by retinoic acid receptor.


Assuntos
Transformação Celular Neoplásica/genética , Genes myb/fisiologia , Receptores do Ácido Retinoico/fisiologia , Fatores de Transcrição/fisiologia , Animais , Vírus da Mieloblastose Aviária/genética , Diferenciação Celular/genética , Divisão Celular/genética , Linhagem Celular Transformada , Galinhas , DNA Complementar/biossíntese , DNA Complementar/genética , DNA Complementar/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Humanos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/fisiologia , Codorniz , Receptores do Ácido Retinoico/biossíntese , Receptores do Ácido Retinoico/classificação , Receptores do Ácido Retinoico/genética , Receptores X de Retinoides , Supressão Genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Ativação Transcricional , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA