Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 9(19): 16138-16147, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28441470

RESUMO

Strategies for protecting unstable semiconductors include the utilization of surface layers composed of thin films deposited using atomic layer deposition (ALD). The protective layer is expected to (1) be stable against reaction with photogenerated holes, (2) prevent direct contact of the unstable semiconductor with the electrolyte, and (3) prevent the migration of ions through the semiconductor/electrolyte interface, while still allowing photogenerated carriers to transport to the interface and participate in the desired redox reactions. Zinc oxide (ZnO) is an attractive photocatalyst material due to its high absorption coefficient and high carrier mobilities. However, ZnO is chemically unstable and undergoes photocorrosion, which limits its use in applications such as in photoelectrochemical cells for water splitting or photocatalytic water purification. This article describes an investigation of the band alignment, electrochemical properties, and interfacial structure of ZnO coated with Al2O3 and SiO2 ALD layers. The interface electronic properties were determined using in situ X-ray and UV photoemission spectroscopy, and the photochemical response and stability under voltage bias were determined using linear sweep voltammetry and chronoamperometry. The resulting surface structure and degradation processes were identified using atomic force, scanning electron, and transmission electron microscopy. The suite of characterization tools enable the failure mechanisms to be more clearly discerned. The results show that the rapid photocorrosion of ZnO thin films is only slightly slowed by use of an Al2O3 ALD coating. A 4 nm SiO2 layer proved to be more effective, but its protection capability could be affected by the diffusion of ions from the electrolyte.

3.
ACS Appl Mater Interfaces ; 8(39): 26365-26373, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27603227

RESUMO

The internal electric field in LiNbO3 provides a driving force for heterogeneous photocatalytic reactions, where photoexcited holes or electrons can participate in redox reactions on positive (+c) and negative (-c) domain surfaces and at the domain boundaries. One method to characterize the surface chemical reactivity is to measure photoinduced Ag deposition by immersing the LiNbO3 in an aqueous AgNO3 solution and illuminating with above bandgap light. Reduction of Ag+ ions leads to the formation of Ag nanoparticles at the surface, and a high density of Ag nanoparticles indicates enhanced surface photochemical reactions. In this study, an n-type semiconducting ZnO layer is deposited on periodically poled LiNbO3 (PPLN) to modulate the surface electronic properties and impact the surface redox reactions. After plasma enhanced atomic layer deposition (PEALD) of 1, 2, 4, and 10 nm ZnO thin films on PPLN substrates, the substrates were immersed in aqueous AgNO3 and illuminated with above band gap UV light. The Ag nanoparticle density increased for 1 and 2 nm ZnO/PPLN heterostructures, indicating an enhanced electron density at the ZnO/PPLN surface. However, increasing the ZnO thickness beyond 2 nm resulted in a decrease in the Ag nanoparticle density. The increase in nanoparticle density is related to the photoexcited charge density at the ZnO/PPLN interface and the presence of a weakly adsorbed Stern layer at the ZnO surface. The decrease in the nanoparticle density for thicker ZnO is attributed to photoexcited electron screening in the ZnO layer that suppresses electron flow from the LiNbO3 to ZnO surface.

4.
ACS Nano ; 8(12): 11994-2003, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25380505

RESUMO

Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events.


Assuntos
DNA , Microscopia de Tunelamento/instrumentação , Nucleotídeos , DNA/química , Condutividade Elétrica , Eletrodos , Ligação de Hidrogênio , Técnicas Analíticas Microfluídicas , Nucleotídeos/química , Paládio/química , Silício/química
5.
J Phys Chem B ; 113(32): 11346-51, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19618947

RESUMO

Uveal melanosomes originating in the iridal stroma contain both black (eumelanin) and red (pheomelanin) pigment. Recent studies reveal that the eumelanin/pheomelanin ratio varies with iris color, with lower ratios being observed for lighter color (hazel, blue) irides. This is of great interest because the epidemiology of uveal melanomas also indicates an increased incidence for lighter-colored irides. Herein, we examine human iridal stroma melanosomes from dark brown and blue-green irides, which are characterized by a eumelanin/pheomelanin ratio of 14.8 and 1.3, respectively. Atomic force microscopy reveals that the melanosomes extracted from these different colored irides have a similar size and overall morphology. Studies of the surface ionization potentials reveal that the surface of these melanosomes is pure eumelanin, despite the significant difference in their overall pigment composition. These data indicate that the pheomelanin present in the melanosome is encased by eumelanin, providing support for the "casing model" architecture of mixed melanins advanced from kinetic studies of the early steps in the melanogenesis pathway. Because of the different bulk composition, these results indicate that the thickness of the outer eumelanin coating decreases as the iride color lightens. Oxidative damage to the melanosome surface is therefore more likely to enable access to the photoreactive pheomelanin in the lighter irides than that in the eumelanin-rich dark irides. This provides new insights into the potential contribution of iridal stroma melanosomes both to inducing oxidative stress and to accounting for the observed iris-color-dependent epidemiology of uveal melanoma.


Assuntos
Iris/química , Melaninas/química , Melanossomas/química , Células Estromais/química , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estresse Oxidativo
6.
Photochem Photobiol ; 85(1): 387-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19067944

RESUMO

Neuromelanin isolated from the premotor cortex, cerebellum, putamen, globus pallidus and corpus callosum of the human brain is studied by scanning probe and photoelectron emission microscopies and the results are compared with previously published work on neuromelanin from the substantia nigra. Scanning electron microscopy reveals common structure for all neuromelanins. All exhibit spherical entities of diameters between 200 and 400 nm, composed of smaller spherical substructures, approximately 30 nm in diameter. These features are similar to that observed for many melanin systems including Sepia cuttlefish, bovine eye, and human eye and hair melanosomes. Photoelectron microscopy images were collected for all neuromelanins at specific wavelengths of ultraviolet light between 248 and 413 nm, using the spontaneous emission output from the Duke free electron laser. Analysis of the data establishes a common threshold photoionization potential for neuromelanins of 4.7 +/- 0.2 eV, corresponding to an oxidation potential of -0.3 +/- 0.2 V vs the normal hydrogen electrode (NHE). These results are consistent with previously reported potentials for neuromelanin from the substantia nigra of 4.5 +/- 0.2 eV (-0.1 +/- 0.2 V vs NHE). All neuromelanins exhibit a common low surface oxidation potential, reflecting their eumelanic component and their inability to trigger redox processes with neurotoxic effect.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Melaninas/biossíntese , Melaninas/isolamento & purificação , Humanos , Microscopia Eletrônica de Varredura , Processos Fotoquímicos
7.
Photochem Photobiol ; 83(3): 692-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17007561

RESUMO

A technique for measuring the photoionization spectrum and the photoelectron emission threshold of a microscopic structured material is presented. The theoretical underpinning of the experiment and the accuracy of the measurements are discussed. The technique is applied to titanium silicide nanostructures and melanosomes isolated from human hair, human and bovine retinal pigment epithelium cells, and the ink sac of Sepia officinalis. A common photothreshold of 4.5 +/- 0.2 eV is found for this set of melanosomes and is attributed to the photoionization of the eumelanin pigment. The relationship between the photoionization threshold and the electrochemical potential referenced to the normal hydrogen electrode is used to quantify the surface oxidation potential of the melanosome. The developed technique is used to examine the effect of iron chelation on the surface oxidation potential of Sepia melanosomes. The surface oxidation potential is insensitive to bound Fe(III) up to saturation, suggesting that the metal is bound to the interior of the granule. This result is discussed in relation to the age-dependent accumulation of iron in human melanosomes in both the eye and brain.


Assuntos
Ferro/metabolismo , Melanossomas/química , Microscopia/métodos , Animais , Bovinos , Cabelo/citologia , Cabelo/ultraestrutura , Humanos , Quelantes de Ferro/farmacologia , Microscopia/instrumentação , Nanoestruturas , Oxirredução , Epitélio Pigmentado Ocular/ultraestrutura , Potenciometria , Sepia , Silicatos , Análise Espectral , Titânio
8.
Proc Natl Acad Sci U S A ; 103(40): 14785-9, 2006 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17001010

RESUMO

Neuromelanin (NM) isolated from the substantia nigra region of the human brain was studied by scanning probe and photoelectron emission microscopies. Atomic force microscopy reveals that NM granules are comprised of spherical structures with a diameter of approximately 30 nm, similar to that observed for Sepia cuttlefish, bovine eye, and human eye and hair melanosomes. Photoelectron microscopy images were collected at specific wavelengths of UV light between 248 and 413 nm, using the spontaneous-emission output from the Duke OK-4 free electron laser. Analysis of the data establishes a threshold photoionization potential for NM of 4.5 +/- 0.2 eV, which corresponds to an oxidation potential of -0.1 +/- 0.2 V vs. the normal hydrogen electrode (NHE). The oxidation potential of NM is within experimental error of the oxidation potential measured for human eumelanosomes (-0.2 +/- 0.2 V vs. NHE), despite the presence of a significant fraction of the red pigment, pheomelanin, which is characterized by a higher oxidation potential (+0.5 +/- 0.2 V vs. NHE). Published kinetic studies on the early chemical steps of melanogenesis show that in the case of pigments containing a mixture of pheomelanin and eumelanin, of which NM is an example, pheomelanin formation occurs first with eumelanin formation predominantly occurring only after cysteine levels are depleted. Such a kinetic model would predict a structural motif with pheomelanin at the core and eumelanin at the surface, which is consistent with the measured surface oxidation potential of the approximately 30-nm constituents of NM granules.


Assuntos
Melaninas/química , Animais , Química Encefálica , Bovinos , Humanos , Melaninas/efeitos da radiação , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Oxirredução , Sepia , Substância Negra/química , Substância Negra/ultraestrutura , Propriedades de Superfície , Raios Ultravioleta
9.
Photochem Photobiol ; 82(6): 1475-81, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16696595

RESUMO

Melanosomes and lipofuscin were isolated from 14-, 59-, and 76-year-old, human retinal pigment epithelium specimens and examined. The morphological features of these samples were studied by scanning electron microscopy and atomic force microscopy, and the photoionization properties were examined by photoelectron emission microscopy. Ovoid- and rod-shaped melanosomes were observed. The size of the granules and the distribution between the two shapes show no significant age-dependent change. However, there is a higher occurrence of irregularly shaped aggregates of small round granules in older samples which suggests degradation or damage to melanosomes occurs with age. The melanosomes from the 14-year-old donor eye are well characterized by a single photoionization threshold, 4.1 eV, while the two older melanosomes exhibit two thresholds around 4.4 and 3.6 eV. Lipofuscin from both young and old cells show two thresholds, 4.4 and 3.4 eV. The similarity of the potentials observed for aged melanosomes and lipofuscin suggest that the lower threshold in the melanosome sample reflects lipofuscin deposited the surface of the melanosome. The amount, however, is not sufficient to alter the density of the melanosome, and therefore these granules do not separate in a sucrose gradient at densities characteristic of the typical melanolipofuscin granule. These data suggest that thin deposits of lipofuscin on the surface of retinal pigment epithelium melanosomes are common in the aged eye and that this renders the melanosomes more pro-oxidant.


Assuntos
Lipofuscina/metabolismo , Melanossomas/metabolismo , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/fisiologia , Retina/crescimento & desenvolvimento , Adolescente , Idoso , Humanos , Luz , Lipofuscina/efeitos da radiação , Melanossomas/efeitos da radiação , Melanossomas/ultraestrutura , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Epitélio Pigmentado Ocular/efeitos da radiação , Espectrofotometria
10.
Photochem Photobiol ; 82(3): 733-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16542109

RESUMO

Free electron laser-photoelectron emission microscopy (FEL-PEEM), femtosecond absorption spectroscopy and electron paramagnetic resonance (EPR) measurements of oxygen photoconsumption were used to probe the threshold potential for ionization of eumelanosomes and pheomelanosomes isolated from human hair. FEL-PEEM data show that both pigments are characterized by an ionization threshold at 282 nm. However, pheomelanosomes exhibit a second ionization threshold at 326 nm, which is interpreted to be reflective of the benzothiazine structural motif present in pheomelanin and absent in eumelanin. The lower ionization threshold for pheomelanin is supported by femtosecond transient absorption spectroscopy. Unlike photolysis at 350 nm, following excitation of solubalized synthetic pheomelanin at 303 nm, the transient spectrum observed between 500 and 700 nm matches that for the solvated electron, indicating the photoionization threshold for the solubalized pigment is between 350 and 303 nm. For the same synthetic pheomelanin, EPR oximetry experiments reveal an increased rate of oxygen uptake between 338 nm and 323 nm, narrowing the threshold for photoionization to sit between these two wavelengths. These results on the solubalized synthetic pigment are consistent with the FEL-PEEM results on the human melanosomes. The lower ionization potential observed for pheomelanin could be an important part of the explanation for the greater incidence rate of UV-induced skin cancers in red-haired individuals.


Assuntos
Melaninas/química , Oxigênio/química , Fotoquímica , Análise Espectral/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Microscopia Eletrônica , Neoplasias Cutâneas/etiologia , Espectrofotometria Ultravioleta
11.
Toxicol Lett ; 155(3): 377-84, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15649621

RESUMO

Carbon nanotubes have widespread applications in multiple engineering disciplines. However, little is known about the toxicity or interaction of these particles with cells. Carbon nanotube films were grown using a microwave plasma enhanced chemical vapor deposition system. Human epidermal keratinocytes (HEK) were exposed to 0.1, 0.2, and 0.4 mg/ml of multi-walled carbon nanotubes (MWCNT) for 1, 2, 4, 8, 12, 24 and 48 h. HEK were examined by transmission electron microscopy for the presence of MWCNT. Here we report that chemically unmodified MWCNT were present within cytoplasmic vacuoles of the HEK at all time points. The MWCNT also induced the release of the proinflammatory cytokine interleukin 8 from HEKs in a time dependent manner. These data clearly show that MWCNT, not derivatized nor optimized for biological applications, are capable of both localizing within and initiating an irritation response in a target epithelial cell that composes a primary route of occupational exposure for manufactured nanotubes.


Assuntos
Queratinócitos/efeitos dos fármacos , Nanotubos de Carbono , Núcleo Celular/ultraestrutura , Sobrevivência Celular , Células Cultivadas , Citoplasma/ultraestrutura , Humanos , Interleucina-8/biossíntese , Queratinócitos/imunologia , Queratinócitos/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/análise , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura
12.
Nanomedicine ; 1(4): 293-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17292102

RESUMO

Interactions of multiwalled carbon nanotubes (MWCNTs) with human epidermal keratinocytes (HEKs) were studied with respect to the effect of surfactant on dispersion of MWCNT aggregates and cytotoxicity. Our earlier studies had shown that the unmodified MWCNTs were localized within the cytoplasmic vacuoles of HEKs and elicited an inflammatory response. However, MWCNTs in solution tend to aggregate and, therefore, cells are exposed to large MWCNT aggregates. The purpose of this study was to find a surfactant that prevents the formation of large aggregates of MWCNTs without being toxic to the HEKs. HEKs were exposed to serial dilutions (10% to 0.1%) of L61, L92, and F127 Pluronic and 20 or 60 Tween for 24 hours. HEK viability, proportional to surfactant concentration, ranged from 27.1% to 98.5% with Pluronic F127; viability with the other surfactants was less than 10%. Surfactants dispersed and reduced MWCNT aggregation in medium. MWCNTs at 0.4 mg/mL in 5% or 1% Pluronic F127 were incubated with HEKs and assayed for interleukin 8 (IL-8). MWCNTs were cytotoxic to HEKs independent of surfactant exposure. In contrast, MWCNT-induced IL-8 release was reduced when exposed to 1% or 5% Pluronic F127 (P < .05). However, both MWCNTs and surfactant, alone or in combination, increased IL-8 release compared with control exposures at 12 and 24 hours. These results suggest that the surfactant-MWCNT interaction is more complex than simple dispersion alone and should be investigated to determine the mode of interaction.


Assuntos
Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Nanotubos de Carbono/efeitos adversos , Nanotubos de Carbono/química , Tensoativos/administração & dosagem , Tensoativos/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Coloides/administração & dosagem , Coloides/química , Relação Dose-Resposta a Droga , Humanos , Queratinócitos/citologia
13.
Photochem Photobiol ; 81(1): 145-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15458368

RESUMO

Eumelanosomes and pheomelanosomes isolated from black and red human hair, respectively, were studied by photoelectron emission microscopy (PEEM). PEEM images were collected at various wavelengths between 207 and 344 nm, using the spontaneous emission output of the Duke OK-4 free electron laser (FEL). Analysis of the FEL-PEEM data revealed ionization thresholds of 4.6 and 3.9 eV corresponding to oxidation potentials of -0.2 and +0.5 V vs normal hydrogen electrode for eumelanosomes and pheomelanosomes, respectively. The difference in oxidation potential is attributed to the pigment content of the melanosome, namely whether it contains primarily eumelanin and pheomelanin. The effect of added melanosomes on the reduction of Fe(III)-cytochrome showed pheomelanosomes are stronger reducing agents than eumelanosomes, consistent with the measured oxidation potentials. The FEL-PEEM experiment offers to be an important new approach for quantifying the effects of age, oxidation and metal accumulation on the oxidation potentials of intact melanosomes.


Assuntos
Melanossomas/metabolismo , Citocromos c/metabolismo , Humanos , Melanossomas/ultraestrutura , Microscopia Eletrônica/métodos , Oxirredução
14.
Philos Trans A Math Phys Eng Sci ; 362(1824): 2537-65, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15482990

RESUMO

The optimization of diamond films as valuable engineering materials for a wide variety of applications has required the development of robust methods for their characterization. Of the many methods used, Raman microscopy is perhaps the most valuable because it provides readily distinguishable signatures of each of the different forms of carbon (e.g. diamond, graphite, buckyballs). In addition it is non-destructive, requires little or no specimen preparation, is performed in air and can produce spatially resolved maps of the different forms of carbon within a specimen. This article begins by reviewing the strengths (and some of the pitfalls) of the Raman technique for the analysis of diamond and diamond films and surveys some of the latest developments (for example, surface-enhanced Raman and ultraviolet Raman spectroscopy) which hold the promise of providing a more profound understanding of the outstanding properties of these materials. The remainder of the article is devoted to the uses of Raman spectroscopy in diamond science and technology. Topics covered include using Raman spectroscopy to assess stress, crystalline perfection, phase purity, crystallite size, point defects and doping in diamond and diamond films.


Assuntos
Diamante/química , Física/métodos , Análise Espectral Raman/métodos , Carbono/química , Espalhamento de Radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA