Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pathol Oncol Res ; 29: 1610914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151356

RESUMO

Tisagenlecleucel (tisa-cel) is a CD19-specific CAR-T cell product approved for the treatment of relapsed/refractory (r/r) DLBCL or B-ALL. We have followed a group of patients diagnosed with childhood B-ALL (n = 5), adult B-ALL (n = 2), and DLBCL (n = 25) who were treated with tisa-cel under non-clinical trial conditions. The goal was to determine how the intensive pretreatment of patients affects the produced CAR-T cells, their in vivo expansion, and the outcome of the therapy. Multiparametric flow cytometry was used to analyze the material used for manufacturing CAR-T cells (apheresis), the CAR-T cell product itself, and blood samples obtained at three timepoints after administration. We present the analysis of memory phenotype of CD4/CD8 CAR-T lymphocytes (CD45RA, CD62L, CD27, CD28) and the expression of inhibitory receptors (PD-1, TIGIT). In addition, we show its relation to the patients' clinical characteristics, such as tumor burden and sensitivity to prior therapies. Patients who responded to therapy had a higher percentage of CD8+CD45RA+CD27+ T cells in the apheresis, although not in the produced CAR-Ts. Patients with primary refractory aggressive B-cell lymphomas had the poorest outcomes which was characterized by undetectable CAR-T cell expansion in vivo. No clear correlation of the outcome with the immunophenotypes of CAR-Ts was observed. Our results suggest that an important parameter predicting therapy efficacy is CAR-Ts' level of expansion in vivo but not the immunophenotype. After CAR-T cells' administration, measurements at several timepoints accurately detect their proliferation intensity in vivo. The outcome of CAR-T cell therapy largely depends on biological characteristics of the tumors rather than on the immunophenotype of produced CAR-Ts.


Assuntos
Linfoma de Células B , Linfoma Difuso de Grandes Células B , Humanos , Citometria de Fluxo , Receptores de Antígenos de Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T CD8-Positivos/metabolismo , Linfoma Difuso de Grandes Células B/patologia
3.
Syst Appl Microbiol ; 44(4): 126217, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34107439

RESUMO

This study aimed to define the taxonomic position and structure of a novel, taxonomically unique group of 26 Acinetobacter strains, provisionally designated Taxon 24 (T24). The strains were recovered from soil and freshwater ecosystems (n = 21) or animals (n = 5) in Czechia, Scotland, Germany, the Netherlands and Turkey between 1993 and 2015. They were non-glucose-acidifying, nonhemolytic, nonproteolytic, growing at 32 °C and on acetate and ethanol as single carbon sources, but not on 4-hydroxybenzoate and mostly not at 37 °C. Their whole-genome sequences were 3.0-3.7 Mb in size, with GC contents of 39.8-41.3%. Based on core genome phylogenetic analysis, the 26 strains formed a distinct clade within the genus Acinetobacter, with strongly supported subclades termed T24A (n = 11), T24B (n = 8), T24C (n = 2), T24D (n = 3) and T24E (n = 2). The internal genomic ANIb values for these subclades were >94.8%, while the ANIb values between them were <92.5%. The results of MALDI-TOF MS-based analyses agreed with this classification. The five subclades differed from each other in the results of one to six carbon source assimilation tests. Given the genomic and phenotypic distinctness, internal coherence, numbers of available strains and geographically diverse origin of T24A and T24B, we propose the names Acinetobacter terrae sp. nov. and Acinetobacter terrestris sp. nov. for these two taxa, respectively. The type strains are ANC 4282v (= CCM 8986T = CCUG 73811T = CNCTC 8082T) and ANC 4471T (= CCM 8985T = CCUG 73812T = CNCTC 8093T), respectively. We conclude that these two species together with the other T24 strains represent a widely dispersed Acinetobacter clade primarily associated with terrestrial ecosystems.


Assuntos
Acinetobacter , Filogenia , Acinetobacter/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , República Tcheca , DNA Bacteriano/genética , Ecossistema , Água Doce/microbiologia , Genes Bacterianos , Alemanha , Países Baixos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Escócia , Análise de Sequência de DNA , Microbiologia do Solo , Turquia
4.
Syst Appl Microbiol ; 42(3): 319-325, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30808586

RESUMO

We studied the taxonomic position of six phenetically related strains of the genus Acinetobacter, which were recovered from hospital sewage in China and showed different patterns of resistance to clinically important antibiotics. Whole-genome sequencing of these strains and genus-wide phylogeny reconstruction based on a set of 107 Acinetobacter core genes indicated that they formed a separate and internally cohesive clade within the genus. The average nucleotide identity based on BLAST and digital DNA-DNA hybridization values between the six new genomes were 97.25-98.67% and 79.2-89.3%, respectively, whereas those between them and the genomes of the known species were ≤78.57% and ≤28.5%, respectively. The distinctness of the strains at the species level was also supported by the results of the cluster analysis of the whole-cell protein fingerprints generated by MALDI-TOF MS. Moreover, the strains displayed a catabolically unique profile and could be differentiated from the phylogenetically closest species at least by their inability to grow on d,l-lactate. A total of 18 different genes were found in the six genome sequences which encode resistance to seven classes of antimicrobial agents, including clinically important carbapenems, oxyimino-cephalosporins, or aminoglycosides. These genes occurred in five different combinations, with three to 10 different genes per strain. We conclude that the six strains represent a novel Acinetobacter species, for which we propose the name Acinetobacter cumulans sp. nov. to reflect its ability to acquire and cumulate diverse resistance determinants. The type strain is WCHAc060092T (ANC 5797T=CCTCC AB 2018119T=GDMCC 1.1380T=KCTC 62576T).


Assuntos
Acinetobacter/classificação , Acinetobacter/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos , Hospitais , Esgotos/microbiologia , Acinetobacter/química , Acinetobacter/efeitos dos fármacos , China , DNA Bacteriano/genética , Genoma Bacteriano/genética , Hibridização de Ácido Nucleico , Mapeamento de Peptídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Syst Appl Microbiol ; 42(2): 159-167, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30392743

RESUMO

In 1986, Bouvet and Grimont delineated two related taxa of the genus Acinetobacter termed genospecies (GS) 8 and 9. They proposed the name Acinetobacter lwoffii for GS8, which included the supposed type strain (CIP 64.10). As the authenticity of CIP 64.10 was later questioned, this study aimed at reassessing the taxonomy of these genospecies. We investigated 52 strains of GS8 or GS9, including CIP 64.10 and the genuine type strain of A. lwoffii (NCTC 5866T). All strains were subjected to the genus-wide comparative analyses of MALDI-TOF whole-cell mass spectra, rpoB gene sequences and metabolic traits while whole-genome sequences were analysed for 16 strains. The strains were classified into two distinct groups corresponding to GS8 (n=15) and GS9 (n=37). CIP 64.10 fell within GS8 whereas NCTC 5866T belonged to GS9. Intraspecies ANIb values for the genomes of GS8 (n=6) and GS9 (n=10) were ≥96.1% and ≥95.4%, respectively, whereas the ANIb values between them were 86.8-88.6%. Based on core genome phylogeny, GS8 and GS9 formed a distinct clade within the genus, with two respective, strongly supported subclades. GS8 and GS9 were similar in physiological and catabolic properties but were separable by MALDI-TOF MS. We conclude that the name A. lwoffii pertains to GS9 and not to GS8 as originally assumed and that these groups represent two species. We propose the name Acinetobacter pseudolwoffii sp. nov. for GS8, with ANC 5044T (=CCM 8638T=CCUG 67963T=CIP 111642T) as the type strain, and provide the emended description of A. lwoffii.


Assuntos
Acinetobacter/classificação , Filogenia , Técnicas de Tipagem Bacteriana , RNA Polimerases Dirigidas por DNA/genética , Genes Bacterianos , Sequenciamento Completo do Genoma
7.
Int J Syst Evol Microbiol ; 65(Pt 3): 857-863, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25510976

RESUMO

We aimed to define the taxonomic status of 16 strains which were phenetically congruent with Acinetobacter DNA group 15 described by Tjernberg & Ursing in 1989. The strains were isolated from a variety of human and animal specimens in geographically distant places over the last three decades. Taxonomic analysis was based on an Acinetobacter-targeted, genus-wide approach that included the comparative sequence analysis of housekeeping, protein-coding genes, whole-cell profiling based on matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), an array of in-house physiological and metabolic tests, and whole-genome comparative analysis. Based on analyses of the rpoB and gyrB genes, the 16 strains formed respective, strongly supported clusters clearly separated from the other species of the genus Acinetobacter. The distinctness of the group at the species level was indicated by average nucleotide identity values of ≤82 % between the whole genome sequences of two of the 16 strains (NIPH 2171(T) and NIPH 899) and those of the known species. In addition, the coherence of the group was also supported by MALDI-TOF MS. All 16 strains were non-haemolytic and non-gelatinase-producing, grown at 41 °C and utilized a rather limited number of carbon sources. Virtually every strain displayed a unique combination of metabolic and physiological features. We conclude that the 16 strains represent a distinct species of the genus Acinetobacter, for which the name Acinetobacter variabilis sp. nov. is proposed to reflect its marked phenotypic heterogeneity. The type strain is NIPH 2171(T) ( = CIP 110486(T) = CCUG 26390(T) = CCM 8555(T)).


Assuntos
Acinetobacter/classificação , Filogenia , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genes Bacterianos , Humanos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA