Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biomedicines ; 11(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38001919

RESUMO

Cerebral palsy (CP) is the most common movement disorder in children, with a prevalence ranging from 1.5 to 4 per 1000 live births. CP is caused by a non-progressive lesion of the developing brain, leading to progressive alterations of the musculoskeletal system, including spasticity, often leading to the development of fixed contractures, necessitating tendon lengthening surgery. Total RNA-sequencing analysis was performed on semitendinosus tendons from diplegic and tetraplegic CP patients subjected to tendon lengthening surgery compared to control patients undergoing anterior cruciate ligament reconstructive surgery. Tetraplegic CP patients showed increased expression of genes implicated in collagen synthesis and extracellular matrix (ECM) turnover, while only minor changes were observed in diplegic CP patients. In addition, tendons from tetraplegic CP patients showed an enrichment for upregulated genes involved in vesicle-mediated transport and downregulated genes involved in cytokine and apoptotic signaling. Overall, our results indicate increased ECM turnover with increased net synthesis of collagen in tetraplegic CP patients without activation of inflammatory and apoptotic pathways, similar to observations in athletes where ECM remodeling results in increased tendon stiffness and tensile strength. Nevertheless, the resulting increased tendon stiffness is an important issue in clinical practice, where surgery is often required to restore joint mobility.

2.
Front Med (Lausanne) ; 10: 1126697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968829

RESUMO

Background: Chronic lung allograft dysfunction (CLAD) is the leading cause of poor long-term survival after lung transplantation (LT). Systems prediction of Chronic Lung Allograft Dysfunction (SysCLAD) aimed to predict CLAD. Methods: To predict CLAD, we investigated the clinicome of patients with LT; the exposome through assessment of airway microbiota in bronchoalveolar lavage cells and air pollution studies; the immunome with works on activation of dendritic cells, the role of T cells to promote the secretion of matrix metalloproteinase-9, and subpopulations of T and B cells; genome polymorphisms; blood transcriptome; plasma proteome studies and assessment of MSK1 expression. Results: Clinicome: the best multivariate logistic regression analysis model for early-onset CLAD in 422 LT eligible patients generated a ROC curve with an area under the curve of 0.77. Exposome: chronic exposure to air pollutants appears deleterious on lung function levels in LT recipients (LTRs), might be modified by macrolides, and increases mortality. Our findings established a link between the lung microbial ecosystem, human lung function, and clinical stability post-transplant. Immunome: a decreased expression of CLEC1A in human lung transplants is predictive of the development of chronic rejection and associated with a higher level of interleukin 17A; Immune cells support airway remodeling through the production of plasma MMP-9 levels, a potential predictive biomarker of CLAD. Blood CD9-expressing B cells appear to favor the maintenance of long-term stable graft function and are a potential new predictive biomarker of BOS-free survival. An early increase of blood CD4 + CD57 + ILT2+ T cells after LT may be associated with CLAD onset. Genome: Donor Club cell secretory protein G38A polymorphism is associated with a decreased risk of severe primary graft dysfunction after LT. Transcriptome: blood POU class 2 associating factor 1, T-cell leukemia/lymphoma domain, and B cell lymphocytes, were validated as predictive biomarkers of CLAD phenotypes more than 6 months before diagnosis. Proteome: blood A2MG is an independent predictor of CLAD, and MSK1 kinase overexpression is either a marker or a potential therapeutic target in CLAD. Conclusion: Systems prediction of Chronic Lung Allograft Dysfunction generated multiple fingerprints that enabled the development of predictors of CLAD. These results open the way to the integration of these fingerprints into a predictive handprint.

3.
Elife ; 122023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927816

RESUMO

Palladin (PALLD) belongs to the PALLD/myopalladin (MYPN)/myotilin family of actin-associated immunoglobulin-containing proteins in the sarcomeric Z-line. PALLD is ubiquitously expressed in several isoforms, and its longest 200 kDa isoform, predominantly expressed in striated muscle, shows high structural homology to MYPN. MYPN gene mutations are associated with human cardiomyopathies, whereas the role of PALLD in the heart has remained unknown, partly due to embryonic lethality of PALLD knockout mice. In a yeast two-hybrid screening, CARP/Ankrd1 and FHOD1 were identified as novel interaction partners of PALLD's N-terminal region. To study the role of PALLD in the heart, we generated conditional (cPKO) and inducible (cPKOi) cardiomyocyte-specific PALLD knockout mice. While cPKO mice exhibited no pathological phenotype, ablation of PALLD in adult cPKOi mice caused progressive cardiac dilation and systolic dysfunction, associated with reduced cardiomyocyte contractility, intercalated disc abnormalities, and fibrosis, demonstrating that PALLD is essential for normal cardiac function. Double cPKO and MYPN knockout (MKO) mice exhibited a similar phenotype as MKO mice, suggesting that MYPN does not compensate for the loss of PALLD in cPKO mice. Altered transcript levels of MYPN and PALLD isoforms were found in myocardial tissue from human dilated and ischemic cardiomyopathy patients, whereas their protein expression levels were unaltered.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Proteínas do Citoesqueleto , Animais , Humanos , Camundongos , Cardiomiopatias/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Camundongos Knockout , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Isoformas de Proteínas/genética
5.
J Cardiovasc Pharmacol ; 78(6): 792-801, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34882111

RESUMO

ABSTRACT: Left-ventricular hypertrophy, characterized by cardiomyocyte hypertrophy, interstitial cell proliferation, and immune cell infiltration, is a high risk factor for heart failure and death. Chemokines interacting with G protein-coupled chemokine receptors probably play a role in left-ventricular hypertrophy development by promoting recruitment of activated leukocytes and modulating left-ventricular remodeling. Using the minimally invasive model of transverse aortic constriction in mice, we demonstrated that a variety of chemokine and chemokine receptor messenger Ribonucleic Acid are overexpressed in the early and late phase of hypertrophy progression. Among the chemokine receptors, Cx3cr1 and Ccr2 were most strongly overexpressed and were significantly upregulated at 3, 7, and 14 days after transverse aortic constriction. Ligands of CX3CR1 (Cx3cl1) and CCR2 (Ccl2, Ccl7, Ccl12) were significantly overexpressed in the left ventricle at the early stages after mechanical pressure overload. Pharmacological inhibition of CX3CR1 signaling using the antagonist AZD8797 led to a significant reduction of hypertrophy, whereas inhibition of CCR2 with the RS504393 antagonist did not show any effect. Furthermore, AZD8797 treatment reduced the expression of the hypertrophic marker genes Nppa and Nppb as well as the profibrotic genes Tgfb1 and Col1a1 at 14 days after transverse aortic constriction. These findings strongly suggest the involvement of the CX3CR1/CX3CL1 pathway in the pathogenesis of left-ventricular hypertrophy.


Assuntos
Receptor 1 de Quimiocina CX3C/antagonistas & inibidores , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Pirimidinas/farmacologia , Tiazóis/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Aorta/fisiopatologia , Aorta/cirurgia , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Constrição , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Transdução de Sinais , Fatores de Tempo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
6.
Acta Pharm Sin B ; 11(9): 2694-2708, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589390

RESUMO

Aberrant CXCR4/CXCL12 signaling is involved in many pathophysiological processes such as cancer and inflammatory diseases. A natural fragment of serum albumin, named EPI-X4, has previously been identified as endogenous peptide antagonist and inverse agonist of CXCR4 and is a promising compound for the development of improved analogues for the therapy of CXCR4-associated diseases. To generate optimized EPI-X4 derivatives we here performed molecular docking analysis to identify key interaction motifs of EPI-X4/CXCR4. Subsequent rational drug design allowed to increase the anti-CXCR4 activity of EPI-X4. The EPI-X4 derivative JM#21 bound CXCR4 and suppressed CXCR4-tropic HIV-1 infection more efficiently than the clinically approved small molecule CXCR4 antagonist AMD3100. EPI-X4 JM#21 did not exert toxic effects in zebrafish embryos and suppressed allergen-induced infiltration of eosinophils and other immune cells into the airways of animals in an asthma mouse model. Moreover, topical administration of the optimized EPI-X4 derivative efficiently prevented inflammation of the skin in a mouse model of atopic dermatitis. Thus, rationally designed EPI-X4 JM#21 is a novel potent antagonist of CXCR4 and the first CXCR4 inhibitor with therapeutic efficacy in atopic dermatitis. Further clinical development of this new class of CXCR4 antagonists for the therapy of atopic dermatitis, asthma and other CXCR4-associated diseases is highly warranted.

7.
Elife ; 102021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34558411

RESUMO

Myopalladin (MYPN) is a striated muscle-specific immunoglobulin domain-containing protein located in the sarcomeric Z-line and I-band. MYPN gene mutations are causative for dilated (DCM), hypertrophic, and restrictive cardiomyopathy. In a yeast two-hybrid screening, MYPN was found to bind to titin in the Z-line, which was confirmed by microscale thermophoresis. Cardiac analyses of MYPN knockout (MKO) mice showed the development of mild cardiac dilation and systolic dysfunction, associated with decreased myofibrillar isometric tension generation and increased resting tension at longer sarcomere lengths. MKO mice exhibited a normal hypertrophic response to transaortic constriction (TAC), but rapidly developed severe cardiac dilation and systolic dysfunction, associated with fibrosis, increased fetal gene expression, higher intercalated disc fold amplitude, decreased calsequestrin-2 protein levels, and increased desmoplakin and SORBS2 protein levels. Cardiomyocyte analyses showed delayed Ca2+ release and reuptake in unstressed MKO mice as well as reduced Ca2+ spark amplitude post-TAC, suggesting that altered Ca2+ handling may contribute to the development of DCM in MKO mice.


Assuntos
Cardiomiopatia Dilatada/genética , Proteínas Musculares/genética , Pressão/efeitos adversos , Animais , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Conectina/metabolismo , Masculino , Camundongos Knockout , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Miocárdio , Miócitos Cardíacos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sarcômeros , Técnicas do Sistema de Duplo-Híbrido
8.
Transplantation ; 105(6): 1212-1224, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33560725

RESUMO

BACKGROUND: Chronic lung allograft dysfunction (CLAD) and its obstructive form, the obliterative bronchiolitis (OB), are the main long-term complications related to high mortality rate postlung transplantation. CLAD treatment lacks a significant success in survival. Here, we investigated a new strategy through inhibition of the proinflammatory mitogen- and stress-activated kinase 1 (MSK1) kinase. METHODS: MSK1 expression was assessed in a mouse OB model after heterotopic tracheal allotransplantation. Pharmacological inhibition of MSK1 (H89, fasudil, PHA767491) was evaluated in the murine model and in a translational model using human lung primary fibroblasts in proinflammatory conditions. MSK1 expression was graded over time in biopsies from a cohort of CLAD patients. RESULTS: MSK1 mRNA progressively increased during OB (6.4-fold at D21 posttransplantation). Inhibition of MSK1 allowed to counteract the damage to the epithelium (56% restoration for H89), and abolished the recruitment of MHCII+ (94%) and T cells (100%) at the early inflammatory phase of OB. In addition, it markedly decreased the late fibroproliferative obstruction in allografts (48%). MSK1 inhibitors decreased production of IL-6 (whose transcription is under the control of MSK1) released from human lung fibroblasts (96%). Finally, we confirmed occurrence of a 2.9-fold increased MSK1 mRNA expression in lung biopsies in patients at 6 months before CLAD diagnosis as compared to recipients with stable lung function. CONCLUSIONS: These findings suggest the overall interest of the MSK1 kinase either as a marker or as a potential therapeutic target in lung dysfunction posttransplantation.


Assuntos
Bronquiolite Obliterante/enzimologia , Fibroblastos/enzimologia , Transplante de Pulmão/efeitos adversos , Pulmão/enzimologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Adolescente , Adulto , Idoso , Animais , Bronquiolite Obliterante/tratamento farmacológico , Bronquiolite Obliterante/etiologia , Bronquiolite Obliterante/patologia , Proliferação de Células , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , França , Humanos , Interleucina-6/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/cirurgia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Reepitelização , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Regulação para Cima , Adulto Jovem
9.
Molecules ; 26(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450992

RESUMO

Mitogen- and Stress-Activated Kinase 1 (MSK1) is a nuclear kinase, taking part in the activation pathway of the pro-inflammatory transcription factor NF-kB and is demonstrating a therapeutic target potential in inflammatory diseases such as asthma, psoriasis and atherosclerosis. To date, few MSK1 inhibitors were reported. In order to identify new MSK1 inhibitors, a screening of a library of low molecular weight compounds was performed, and the results highlighted the 6-phenylpyridin-2-yl guanidine (compound 1a, IC50~18 µM) as a starting hit for structure-activity relationship study. Derivatives, homologues and rigid mimetics of 1a were designed, and all synthesized compounds were evaluated for their inhibitory activity towards MSK1. Among them, the non-cytotoxic 2-aminobenzimidazole 49d was the most potent at inhibiting significantly: (i) MSK1 activity, (ii) the release of IL-6 in inflammatory conditions in vitro (IC50~2 µM) and (iii) the inflammatory cell recruitment to the airways in a mouse model of asthma.


Assuntos
Desenho de Fármacos , Guanidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Células Cultivadas , Guanidinas/síntese química , Guanidinas/química , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
10.
J Vis Exp ; (127)2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28994784

RESUMO

Transverse aortic constriction (TAC) in mice is one of the most commonly used surgical techniques for experimental investigation of pressure overload-induced left ventricular hypertrophy (LVH) and its progression to heart failure. In the majority of the reported investigations, this procedure is performed with intubation and ventilation of the animal which renders it demanding and time-consuming and adds to the surgical burden to the animal. The aim of this protocol is to describe a simplified technique of minimally invasive TAC without intubation and ventilation of mice. Critical steps of the technique are emphasized in order to achieve low mortality and high efficiency in inducing LVH. Male C57BL/6 mice (10-week-old, 25-30 g, n=60) were anesthetized with a single intraperitoneal injection of a mixture of ketamine and xylazine. In a spontaneously breathing animal following a 3-4 mm upper partial sternotomy, a segment of 6/0 silk suture threaded through the eye of a ligation aid was passed under the aortic arch and tied over a blunted 27-gauge needle. Sham-operated animals underwent the same surgical preparation but without aortic constriction. The efficacy of the procedure in inducing LVH is attested by a significant increase in the heart/body weight ratio. This ratio is obtained at days 3, 7, 14 and 28 after surgery (n = 6 - 10 in each group and each time point). Using our technique, LVH is observed in TAC compared to sham animals from day 7 through day 28. Operative and late (over 28 days) mortalities are both very low at 1.7%. In conclusion, our cost-effective technique of minimally invasive TAC in mice carries very low operative and post-operative mortalities and is highly efficient in inducing LVH. It simplifies the operative procedure and reduces the strain put on the animal. It can be easily performed by following the critical steps described in this protocol.


Assuntos
Aorta Torácica/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
PLoS One ; 11(8): e0161273, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525724

RESUMO

Left-ventricular hypertrophy (LVH), a risk factor for heart failure and death, is characterized by cardiomyocyte hypertrophy, interstitial cell proliferation, and leukocyte infiltration. Chemokines interacting with G protein-coupled chemokine receptors may play a role in LVH development by promoting recruitment of activated leukocytes or modulating left-ventricular remodeling. Using a pressure overload-induced kinetic model of LVH in rats, we examined during 14 days the expression over time of chemokine and chemokine receptor mRNAs in left ventricles from aortic-banded vs sham-operated animals. Two phases were clearly distinguished: an inflammatory phase (D3-D5) with overexpression of inflammatory genes such as il-1ß, tnfa, nlrp3, and the rela subunit of nf-kb, and a hypertrophic phase (D7-D14) where anp overexpression was accompanied by a heart weight/body weight ratio that increased by more than 20% at D14. No cardiac dysfunction was detectable by echocardiography at the latter time point. Of the 36 chemokines and 20 chemokine receptors analyzed by a Taqman Low Density Array panel, we identified at D3 (the early inflammatory phase) overexpression of mRNAs for the monocyte chemotactic proteins CCL2 (12-fold increase), CCL7 (7-fold increase), and CCL12 (3-fold increase), for the macrophage inflammatory proteins CCL3 (4-fold increase), CCL4 (2-fold increase), and CCL9 (2-fold increase), for their receptors CCR2 (4-fold increase), CCR1 (3-fold increase), and CCR5 (3-fold increase), and for CXCL1 (8-fold increase) and CXCL16 (2-fold increase). During the hypertrophic phase mRNA expression of chemokines and receptors returned to the baseline levels observed at D0. Hence, this first exhaustive study of chemokine and chemokine receptor mRNA expression kinetics reports early expression of monocyte/macrophage-related chemokines and their receptors during the development of LVH in rats, followed by regulation of inflammation as LVH progresses.


Assuntos
Quimiocinas/genética , Perfilação da Expressão Gênica , Hipertrofia Ventricular Esquerda/genética , Receptores de Quimiocinas/genética , Animais , Aorta/cirurgia , Progressão da Doença , Hipertrofia Ventricular Esquerda/etiologia , Cinética , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
12.
Physiol Rep ; 4(4)2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26908711

RESUMO

Obliterative bronchiolitis is the principal long-term problem for lung transplant patients. One of the simplest and most reproducible animal models of obliterative bronchiolitis is heterotopic tracheal transplantation in subcutaneous tissue, where the graft is not primarily vascularized. We demonstrate here the rapid graft revascularization and the kinetics of expression of its angiogenic and lymphatic factors. We performed iso- and allotracheal transplantations harvested on day 0-21. The number of functional blood vessels, quantified after intravenous biotinylated dextran administration, increased from D0 (0 for both iso- and allografts) to D21 (44 ± 8 vessels/mm(2) in isografts and 22 ± 3 in allografts, P < 0.001 for both vs. D0). VEGF mRNA expression assessed by qPCR peaked on D1 (4.3-fold increase in isografts and 4.0-fold in allografts, P < 0.0001 for both vs. D0), but receded thereafter. Angiopoietin-1, involved in the maturation of the neoformed vessels, increased later on, by 6.2-fold (P < 0.05) in isografts and 11.5-fold in allografts (P < 0.001) by D21, and angiopoietin-2 by 7.8-fold in isografts (P < 0.05) and 13.8-fold in allografts (P < 0.01). Although always present in the iso- and allografts, there were significantly more and larger LYVE1(+) lymphatic vessels at D21 in allografts than in isografts. Thus, we demonstrate that tracheal grafts are rapidly revascularized by functional blood and lymphatic vessels, due to early VEGF and subsequent angiopoietins expression, which is a new advantage of this model, in addition to its ease of use, reproducibility, and viability in the absence of immunosuppressive treatment.


Assuntos
Bronquiolite Obliterante/patologia , Modelos Animais de Doenças , Neovascularização Fisiológica/fisiologia , Traqueia/transplante , Animais , Bronquiolite Obliterante/etiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Traqueia/irrigação sanguínea , Transplante Heterotópico
13.
PLoS One ; 7(11): e49512, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23189147

RESUMO

BACKGROUND: H89 is a potent inhibitor of Protein Kinase A (PKA) and Mitogen- and Stress-Activated protein Kinase 1 (MSK1) with some inhibitory activity on other members of the AGC kinase family. H89 has been extensively used in vitro but its anti-inflammatory potential in vivo has not been reported to date. To assess the anti-inflammatory properties of H89 in mouse models of asthma. METHODOLOGY/PRINCIPAL FINDINGS: Mice were sensitized intraperitoneally (i.p.) to ovalbumin (OVA) with or without alum, and challenged intranasally with OVA. H89 (10 mg/kg) or vehicle was given i.p. two hours before each OVA challenge. Airway hyperresponsiveness (AHR) was assessed by whole-body barometric plethysmography. Inflammation was assessed by the total and differential cell counts and IL-4 and IL-5 levels in bronchoalveolar lavage (BAL) fluid. Lung inflammation, mucus production and mast cell numbers were analyzed after histochemistry. We show that treatment with H89 reduces AHR, lung inflammation, mast cell numbers and mucus production. H89 also inhibits IL-4 and IL-5 production and infiltration of eosinophils, neutrophils and lymphocytes in BAL fluid. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings implicate that blockade of AGC kinases may have therapeutic potential for the treatment of allergic airway inflammation.


Assuntos
Asma/metabolismo , Isoquinolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Animais , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/biossíntese , Modelos Animais de Doenças , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Isoquinolinas/administração & dosagem , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos , Muco/efeitos dos fármacos , Muco/metabolismo , Ovalbumina/efeitos adversos , Ovalbumina/imunologia , Inibidores de Proteínas Quinases/administração & dosagem , Sulfonamidas/administração & dosagem , Células Th2/efeitos dos fármacos , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA