Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gels ; 10(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38786234

RESUMO

The objective of this study was to demonstrate the potential utilization of fly ash (FA), wood ash (WA), and metakaolin (MK) in developing new alkali-activated materials (AAMs) for the removal of cadmium ions from waste water. The synthesis of AAMs involved the dissolution of solid precursors, FA, WA, and MK, by a liquid activator (Na2SiO3 and NaOH). In concentrated solutions of the activator, the formation of an aluminosilicate gel structure occurred. DRIFT spectroscopy of the AAMs indicated main vibration bands between 1036 cm-1 and 996 cm-1, corresponding to Si-O-Si/Si-O-Al bands. Shifting vibration bands were seen at 1028 cm-1 to 1021 cm-1, indicating that the Si-O-Si/Si-O-Al bond is elongating, and the bond angle is decreasing. Based on the X-ray diffraction results, alkali-activated samples consist of an amorphous phase and residual mineral phases. The characteristic "hump" of an amorphous phase in the range from 20 to 40° 2θ was observed in FA and in all AWAFA samples. By the XRD patterns of the AAMs obtained by the activation of a solid three-component system, a new crystalline phase, gehlenite, was identified. The efficiency of AAMs in removing cadmium ions from aqueous solutions was tested under various conditions. The highest values of adsorption capacity, 64.76 mg/g (AWAFA6), 67.02 mg/g (AWAFAMK6), and 72.84 mg/g mg/g (AWAMK6), were obtained for materials activated with a 6 M NaOH solution in the alkali activator. The Langmuir adsorption isotherm and pseudo-second kinetic order provided the best fit for all investigated AAMs.

2.
Materials (Basel) ; 17(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611993

RESUMO

Porous anorthite (CaAl2Si2O8) ceramics, suitable for thermal insulation in buildings, were obtained using waste seashells as a source of CaO, kaolin as a source of Al2O3 and SiO2 and banana peel as a pore former. Changing the volume of banana peel as well as the processing temperature was found to be an effective approach to control the thermo-mechanical properties of the obtained anorthite ceramics. The sintering of powder compacts containing up to 30 wt% banana peel at temperatures ranging from 1100 to 1200 °C resulted in anorthite ceramics possessing up to 45% open porosity, a compressive strength between 13 and 92 MPa, a bulk density between 1.87 and 2.62 g/cm3 and thermal conductivity between 0.097 and 3.5 W/mK. It was shown that waste materials such as seashells and banana peel can be used to obtain cost-effective thermal insulation in buildings.

3.
Nanomaterials (Basel) ; 13(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242079

RESUMO

The following investigation presents the thermal treatment of geopolymer at 300 °C, 600 °C and 900 °C. We investigated what happens to the geopolymer base when incorporated with 1% and 5% of neodymium in the form Nd2O3. A total of six samples were synthesized. Geopolymer 1 contained 1% and geopolymer 2 contained 5% Nd2O3, and these samples were treated at 300 °C; then, samples geopolymer 3 and geopolymer 4 also had the same percentage composition of Nd2O3 and were treated at 600 °C, while samples geopolymer 5 and geopolymer 6were treated at 900 °C. Physical and chemical changes in the aluminosilicate geopolymer matrix were monitored. The incorporation of rare earths into the polymer network of aluminosilicates has been proven to disrupt the basic structure of geopolymers; however, with increased temperatures, these materials show even more unusual properties. Diffuse reflectance infrared Fourier transform (DRIFT) analysis showed that the intensity of the vibrational band decreases with the increase in temperature during thermal treatment, suggesting alterations in the chemical structure of the geopolymers. Transmission electron microscopy (TEM) analysis showed that the diameter of the nanoparticles containing Al2O3 is in the range 5-10 nm, while larger crystallites range from 30 to 80 nm. Scanning electron microscopy (SEM) analysis revealed that the temperature of the thermal treatment increases to 300 °C and 600 °C; the porosity of geopolymer increases in the form of the appearance of large pores and cracks in material. X-ray photoelectron spectroscopy (XPS) analysis was used to investigate the surface chemistry of geopolymers, including the chemical composition of the surface, the oxidation state of the elements, and the presence of functional groups. The UV/Vis spectra of the synthesized geopolymers doped with Nd3+ show interesting optical properties at 900 °C; the geopolymer matrix completely disintegrates and an amorphous phase with a rare-earth precipitate appears.

4.
Gels ; 8(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35735677

RESUMO

In this paper, raw natural metakaolin (MK, Serbia) clay was used as a starting material for the synthesis of geopolymers for thermal treatment. Metakaolin was obtained by calcination of kaolin at 750 °C for 1 h while geopolymer samples were calcined at 900 °C, which is the key transition temperature. Metakaolin was activated by a solution of NaOH of various concentrations and sodium silicate. During the controlled heat treatment, the geopolymer samples began to melt slightly and coagulate locally. The high-temperature exposure of geopolymer samples (900 °C) caused a significant reduction in oxygen, and even more sodium, which led to the formation of a complex porous structure. As the concentration of NaOH (6 mol dm-3 and 8 mol dm-3) increased, new semi-crystalline phases of nepheline and sanidine were formed. Thermal properties were increasingly used to better understand and improve the properties of geopolymers at high temperatures. Temperature changes were monitored by simultaneous use of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The loss of mass of the investigated samples at 900 °C was in the range of 8-16%. Thermal treatment of geopolymers at 900 °C did not have much effect on the change in compressive strength of investigated samples. The results of thermal treatment of geopolymers at 900 °C showed that this is approximately the temperature at which the structure of the geopolymer turns into a ceramic-like structure. All investigated properties of the geopolymers are closely connected to the precursors and the constituents of the geopolymers.

5.
Gels ; 7(4)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34940330

RESUMO

Since recycled technologies usage is mandatory for environmental safety, and in this regard, it is important to examine new materials that can be used in construction and are primarily produced from fly ash. In addition to characteristics such as hardness and compressive strength, the given materials must also be radiologically and environmentally safe. The main concept of engineered geopolymer gel composites based on fly ash residues is focused on developing binder materials via gel formation processes that can replace ordinary cement materials. This study is unique in researching the potential use of fly ash from the Nikola Tesla thermal power plant in Serbia, where the hybrid geopolymeric materials synthesized from fly ash are experimentally examined with the addition 1 wt% and 2 wt% of polyvinyl alcohol (PVA). This paper aims to investigate the structural, morphological, mechanical, and radiological properties of hybrid materials with the addition of PVA and without additive in the period of ageing for 28 days at room temperature. The phase composition was investigated using X-ray powder diffraction (XRPD) analysis, while morphological characteristics of these materials were examined using scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDS). Vibrational spectra of obtained samples are investigated using diffuse reflectance infrared Fourier transform (DRIFT) and Fourier transform infrared (FTIR) techniques. The hardness and compressive strength are also examined, indicating that the 1 wt% addition in geopolymeric matrix results in the best mechanical properties. Radiological measurements of investigated all geopolymer samples show decreasing activity concentrations of radionuclides for 50% compared to fly ash.

6.
Gels ; 7(4)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34842670

RESUMO

The present work was focused on doping of 1% and 5% both of Nd2O3 and Sm2O3 in geopolymer gels. One of the main goals was to determine the influence of the behavior of Nd and Sm as dopants and structural nanoparticles changes of the final geopolymer formed. It is shown that the disorder formed by alkali activation of metakaolin can accommodate the rare earth cations Nd3+ and Sm3+ into their aluminosilicate framework structure. The main geopolymerization product identified in gels is Al-rich (Na)-AS-H gel comprising Al and Si in tetrahedral coordination. Na+ ions were balancing the negative charge resulting from Al3+ in tetrahedral coordination. The changes in the structures of the final product (geopolymer/Nd2O3; Sm2O3), has been characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis with energy dispersive spectrometry (EDS). Nucleation at the seed surfaces leads to the formation of phase-separated gels from rare earth phase early in the reaction process. It is confirmed that Nd and Sm have been shown to form unstable hydroxides Nd(OH)3 and Sm(OH)3 that are in equilibrium with the corresponding oxides.

7.
Int J Pharm ; 605: 120847, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216763

RESUMO

Liquisolid systems are emerging formulation approach for poorly soluble drugs, based on adsorption/absorption of drug dispersion and obtaining free-flowing powder with good compressibility. SeDeM Expert System represents a powder processability evaluation method. It may provide additional insight into liquisolid systems critical quality attributes, but the contribution of this approach remains to be explored. The aims of this study were: pellet preparation by combination of liquisolid technology and water granulation/extrusion, evaluation of liquisolid based systems (pellets/admixtures) and investigation into the applicability of SeDeM Expert System in liquisolid systems characterization. Pellets/admixtures were prepared with microcrystalline cellulose as carrier and crospovidone/silicon dioxide as coating agent. Ibuprofen solution in polyethylene glycol 400 was used as liquid phase. After comprehensive sample characterization, experimentally obtained parameters were mathematically transformed and evaluated in the SeDeM Expert System framework. Pellets exhibited low aspect ratio and excellent flowability, despite liquid load up to 52.2%. The investigated liquisolid admixtures exhibited good flowability and faster drug dissolution than pellets. Single pellet crushing test results exhibited strong correlation with compact indentation hardness and may be used as indentation hardness predictor. SeDeM Expert System provides useful insight into liquisolid system processability and comparative evaluation and it may facilitate final solid dosage form development.


Assuntos
Sistemas Inteligentes , Povidona , Liberação Controlada de Fármacos , Pós , Solubilidade , Comprimidos
8.
Materials (Basel) ; 14(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430482

RESUMO

In this study, the removal of nickel (Ni(II)) by adsorption from synthetically prepared solutions using natural bentonites (Lieskovec (L), Hliník nad Hronom (S), Jelsový Potok (JP), and Stará Kremnicka (SK)) was investigated. All experiments were carried out under batch processing conditions, with the concentration of Ni(II), temperature, and time as the variables. The adsorption process was fast, approaching equilibrium within 30 min. The Langmuir maximum adsorption capacities of the four bentonite samples used were found to be 8.41, 12.24, 21.79, and 21.93 mg g-1, respectively. The results best fitted the pseudo-second-order kinetic model, with constant rates in a range of 0.0948-0.3153 g mg-1 min. The effect of temperature was investigated at temperatures of 20, 30, and 40 °C. Thermodynamic parameters, including standard enthalpy (ΔH0), Gibbs energy (ΔG0), and standard entropy (ΔS0), were calculated. The adsorption of Ni(II) by bentonite samples was an endothermic and spontaneous process. These results indicated that, of the bentonite samples used, the natural bentonites from JP and SK were most suitable for the removal of nickel from synthetically prepared solutions.

9.
Polymers (Basel) ; 12(1)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968670

RESUMO

As a material for application in the life sciences, a new composite material, geopolymer/CeO2 (GP_CeO2), was synthesized as a potential low-cost solid electrolyte for application in solid oxide fuel cells operating in intermediate temperature (IT-SOFC). The new materials were obtained from alkali-activated metakaolin (calcined clay) in the presence of CeO2 powders (x = 10%). Besides the commercial CeO2 powder, as a source of ceria, two differently synthesized CeO2 powders also were used: CeO2 synthesized by modified glycine nitrate procedure (MGNP) and self-propagating reaction at room temperature (SPRT). The structural, morphological, and electrical properties of pure and GP_CeO2-type samples were investigated by X-ray powder diffraction (XRPD), Fourier transform infrared (FTIR), BET, differential thermal and thermogravimetric analysis (DTA/TGA), scanning electron microscopy (FE-SEM), energy dispersive spectrometer (EDS), and method complex impedance (EIS). XRPD and matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) analysis confirmed the formation of solid phase CeO2. The BET, DTA/TGA, FE-SEM, and EDS results indicated that particles of CeO2 were stabile interconnected and form a continuous conductive path, which was confirmed by the EIS method. The highest conductivity of 1.86 × 10-2 Ω-1 cm-1 was obtained for the sample GP_CeO2_MGNP at 700 °C. The corresponding value of activation energy for conductivity was 0.26 eV in the temperature range 500-700 °C.

10.
Sci Total Environ ; 429: 309-16, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22591991

RESUMO

In the present work, naturally occurring radionuclides ²³8U, ²³²Th and 4°K were measured in soil samples from the cultivated and undisturbed areas in Rudovci, municipality of Lazarevac, Serbia. There were three profiles, each profile divided into four horizons, giving the twelve soil samples. The specific activity of ²³8U, ²³²Th and 4°K in soil and sediment samples was determined by gamma spectrometry using the HPGe semiconductor detector. Obtained activity concentrations ranged from 28.0 to 44.0 Bq/kg for ²³8U, from 59.4 to 71.4 Bq/kg for ²³²Th and from 335.0 to 517.0 Bq/kg for 4°K. The evaluation of the radiological hazards originated from ²³8U, ²³²Th and 4°K in the samples, the absorbed dose rate (D) and the annual effective dose rate (E), calculated in accordance with the UNSCEAR 2000 report, are presented in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA