Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cryst Growth Des ; 23(10): 7010-7025, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37808904

RESUMO

Indium nitride (InN) is a low-band-gap semiconductor with unusually high electron mobility, making it suitable for IR-range optoelectronics and high-frequency transistors. However, the development of InN-based electronics is hampered by the metastable nature of InN. The decomposition temperature of InN is lower than the required growth temperature for most crystal growth techniques. Here, we discuss growth of InN films and epitaxial layers by atomic layer deposition (ALD), a growth technique based on self-limiting surface chemical reactions and, thus, inherently a low-temperature technique. We describe the current state of the art in ALD of InN and InN-based ternary alloys with GaN and AlN, and we contrast this to other growth technologies for these materials. We believe that ALD will be the enabling technology for realizing the promise of InN-based electronics.

3.
ACS Appl Mater Interfaces ; 13(10): 12575-12580, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33667063

RESUMO

Epitaxial transition metal nitrides (TMNs) are an emerging class of crystalline thin film metals that can be heteroepitaxially integrated with common group III-nitride semiconductors such as GaN and AlN. Within a binary family of TMN compounds (i.e., TaxNy), several phases typically exist, many with similar crystal structures that are difficult to distinguish by conventional X-ray diffraction or other bulk characterization means. In this work, we demonstrate the combined power of high-resolution transmission and aberration-corrected scanning transmission electron microscopy for definitive phase identification of tantalum nitrides with different N-sublattice ordering. Analysis of molecular beam epitaxy-grown γ-Ta2N films on SiC substrates shows that the films are γ phase, threading dislocation-free, and Ta-deficient. The lack of Ta manifests as ordered Ta vacancy planar defects oriented in the plane perpendicular to the [0001] growth direction and accounts for the substoichiometry. Optimization of the growth parameters should reduce the Ta vacancy concentration, and alternatively, exploitation of the attractive nature of the Ta vacancies may enable novel planar structures. These findings serve as an important first step in applying this epitaxial TMN material for new electronic and superconducting device structures.

4.
Sci Adv ; 7(8)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33608281

RESUMO

Creating seamless heterostructures that exhibit the quantum Hall effect and superconductivity is highly desirable for future electronics based on topological quantum computing. However, the two topologically robust electronic phases are typically incompatible owing to conflicting magnetic field requirements. Combined advances in the epitaxial growth of a nitride superconductor with a high critical temperature and a subsequent nitride semiconductor heterostructure of metal polarity enable the observation of clean integer quantum Hall effect in the polarization-induced two-dimensional (2D) electron gas of the high-electron mobility transistor. Through individual magnetotransport measurements of the spatially separated GaN 2D electron gas and superconducting NbN layers, we find a small window of magnetic fields and temperatures in which the epitaxial layers retain their respective quantum Hall and superconducting properties. Its analysis indicates that in epitaxial nitride superconductor/semiconductor heterostructures, this window can be significantly expanded, creating an industrially viable platform for robust quantum devices that exploit topologically protected transport.

5.
ACS Appl Mater Interfaces ; 12(46): 52192-52200, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33146516

RESUMO

ScAlN is an emergent ultrawide-band-gap material with both a high piezoresponse and demonstrated ferroelectric polarization switching. Recent demonstration of epitaxial growth of ScAlN on GaN has unlocked prospects for new high-power transistors and nonvolatile memory technologies fabricated from these materials. An understanding of the band alignments between ScAlN and GaN is crucial in order to control the electronic and optical properties of engineered devices. To date, there have been no experimental studies of the band offsets between ScAlN and GaN. This work presents optical characterization of the band gap of molecular beam epitaxy grown ScxAl1-xN using spectroscopic ellipsometry and measurements of the band offsets of ScxAl1-xN with GaN using X-ray photoemission spectroscopy, along with a comparison to first-principles calculations. The band gap is shown to continuously decrease as a function of increasing ScN alloy fraction with a negative bowing parameter. Furthermore, a crossover from straddling (type-I) to staggered (type-II) band offsets is demonstrated as Sc composition increases beyond approximately x = 0.11. These results show that the ScAlN/GaN valence band alignment can be tuned by changing the Sc alloy fraction, which can help guide the design of heterostructures in future ScAlN/GaN-based devices.

6.
Nat Commun ; 11(1): 2314, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385280

RESUMO

Solid-state quantum acoustodynamic (QAD) systems provide a compact platform for quantum information storage and processing by coupling acoustic phonon sources with superconducting or spin qubits. The multi-mode composite high-overtone bulk acoustic wave resonator (HBAR) is a popular phonon source well suited for QAD. However, scattering from defects, grain boundaries, and interfacial/surface roughness in the composite transducer severely limits the phonon relaxation time in sputter-deposited devices. Here, we grow an epitaxial-HBAR, consisting of a metallic NbN bottom electrode and a piezoelectric GaN film on a SiC substrate. The acoustic impedance-matched epi-HBAR has a power injection efficiency >99% from transducer to phonon cavity. The smooth interfaces and low defect density reduce phonon losses, yielding (f × Q) and phonon lifetimes up to 1.36 × 1017 Hz and 500 µs respectively. The GaN/NbN/SiC epi-HBAR is an electrically actuated, multi-mode phonon source that can be directly interfaced with NbN-based superconducting qubits or SiC-based spin qubits.

7.
ACS Nano ; 13(6): 6730-6741, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31184132

RESUMO

Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular material is chosen, the SPhP characteristics are fixed by the spectral positions of the optic phonon frequencies. Here, we provide a demonstration of how the frequency of these optic phonons can be altered by employing atomic-scale superlattices (SLs) of polar semiconductors using AlN/GaN SLs as an example. Using second harmonic generation (SHG) spectroscopy, we show that the optic phonon frequencies of the SLs exhibit a strong dependence on the layer thicknesses of the constituent materials. Furthermore, new vibrational modes emerge that are confined to the layers, while others are centered at the AlN/GaN interfaces. As the IR dielectric function is governed by the optic phonon behavior in polar materials, controlling the optic phonons provides a means to induce and potentially design a dielectric function distinct from the constituent materials and from the effective-medium approximation of the SL. We show that atomic-scale AlN/GaN SLs instead have multiple Reststrahlen bands featuring spectral regions that exhibit either normal or extreme hyperbolic dispersion with both positive and negative permittivities dispersing rapidly with frequency. Apart from the ability to engineer the SPhP properties, SL structures may also lead to multifunctional devices that combine the mechanical, electrical, thermal, or optoelectronic functionality of the constituent layers. We propose that this effort is another step toward realizing user-defined, actively tunable IR optics and sources.

8.
Nature ; 555(7695): 183-189, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29516996

RESUMO

Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors-silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor-an electronic gain element-to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance-a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

9.
J Vis Exp ; (117)2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27911417

RESUMO

Plasma-assisted molecular beam epitaxy is well suited for the epitaxial growth of III-nitride thin films and heterostructures with smooth, abrupt interfaces required for high-quality high-electron-mobility transistors (HEMTs). A procedure is presented for the growth of N-polar InAlN HEMTs, including wafer preparation and growth of buffer layers, the InAlN barrier layer, AlN and GaN interlayers and the GaN channel. Critical issues at each step of the process are identified, such as avoiding Ga accumulation in the GaN buffer, the role of temperature on InAlN compositional homogeneity, and the use of Ga flux during the AlN interlayer and the interrupt prior to GaN channel growth. Compositionally homogeneous N-polar InAlN thin films are demonstrated with surface root-mean-squared roughness as low as 0.19 nm and InAlN-based HEMT structures are reported having mobility as high as 1,750 cm2/V∙sec for devices with a sheet charge density of 1.7 x 1013 cm-2.


Assuntos
Transistores Eletrônicos , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA