Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 199, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867314

RESUMO

BACKGROUND: Metformin and sodium-glucose-cotransporter-2 inhibitors (SGLT2i) are cornerstone therapies for managing hyperglycemia in diabetes. However, their detailed impacts on metabolic processes, particularly within the citric acid (TCA) cycle and its anaplerotic pathways, remain unclear. This study investigates the tissue-specific metabolic effects of metformin, both as a monotherapy and in combination with SGLT2i, on the TCA cycle and associated anaplerotic reactions in both mice and humans. METHODS: Metformin-specific metabolic changes were initially identified by comparing metformin-treated diabetic mice (MET) with vehicle-treated db/db mice (VG). These findings were then assessed in two human cohorts (KORA and QBB) and a longitudinal KORA study of metformin-naïve patients with Type 2 Diabetes (T2D). We also compared MET with db/db mice on combination therapy (SGLT2i + MET). Metabolic profiling analyzed 716 metabolites from plasma, liver, and kidney tissues post-treatment, using linear regression and Bonferroni correction for statistical analysis, complemented by pathway analyses to explore the pathophysiological implications. RESULTS: Metformin monotherapy significantly upregulated TCA cycle intermediates such as malate, fumarate, and α-ketoglutarate (α-KG) in plasma, and anaplerotic substrates including hepatic glutamate and renal 2-hydroxyglutarate (2-HG) in diabetic mice. Downregulated hepatic taurine was also observed. The addition of SGLT2i, however, reversed these effects, such as downregulating circulating malate and α-KG, and hepatic glutamate and renal 2-HG, but upregulated hepatic taurine. In human T2D patients on metformin therapy, significant systemic alterations in metabolites were observed, including increased malate but decreased citrulline. The bidirectional modulation of TCA cycle intermediates in mice influenced key anaplerotic pathways linked to glutaminolysis, tumorigenesis, immune regulation, and antioxidative responses. CONCLUSION: This study elucidates the specific metabolic consequences of metformin and SGLT2i on the TCA cycle, reflecting potential impacts on the immune system. Metformin shows promise for its anti-inflammatory properties, while the addition of SGLT2i may provide liver protection in conditions like metabolic dysfunction-associated steatotic liver disease (MASLD). These observations underscore the importance of personalized treatment strategies.


Assuntos
Ciclo do Ácido Cítrico , Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Rim , Fígado , Metformina , Inibidores do Transportador 2 de Sódio-Glicose , Metformina/farmacologia , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Humanos , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangue , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Feminino , Quimioterapia Combinada , Camundongos Endogâmicos C57BL , Metabolômica , Biomarcadores/sangue , Pessoa de Meia-Idade , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Estudos Longitudinais , Camundongos , Idoso , Resultado do Tratamento
2.
Int J Biol Macromol ; 265(Pt 1): 130962, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503370

RESUMO

Combining a Sodium-Glucose-Cotransporter-2-inhibitor (SGLT2i) with metformin is recommended for managing hyperglycemia in patients with type 2 diabetes (T2D) who have cardio-renal complications. Our study aimed to investigate the metabolic effects of SGLT2i and metformin, both individually and synergistically. We treated leptin receptor-deficient (db/db) mice with these drugs for two weeks and conducted metabolite profiling, identifying 861 metabolites across kidney, liver, muscle, fat, and plasma. Using linear regression and mixed-effects models, we identified two SGLT2i-specific metabolites, X-12465 and 3-hydroxybutyric acid (3HBA), a ketone body, across all examined tissues. The levels of 3HBA were significantly higher under SGLT2i monotherapy compared to controls and were attenuated when combined with metformin. We observed similar modulatory effects on metabolites involved in protein catabolism (e.g., branched-chain amino acids) and gluconeogenesis. Moreover, combination therapy significantly raised pipecolate levels, which may enhance mTOR1 activity, while modulating GSK3, a common target of SGLT2i and 3HBA inhibition. The combination therapy also led to significant reductions in body weight and lactate levels, contrasted with monotherapies. Our findings advocate for the combined approach to better manage muscle loss, and the risks of DKA and lactic acidosis, presenting a more effective strategy for T2D treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Ácido 3-Hidroxibutírico , Ácido Láctico/uso terapêutico , Quinase 3 da Glicogênio Sintase/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
3.
Metabolites ; 11(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546276

RESUMO

Biological exploration of early biomarkers for chronic kidney disease (CKD) in (pre)diabetic individuals is crucial for personalized management of diabetes. Here, we evaluated two candidate biomarkers of incident CKD (sphingomyelin (SM) C18:1 and phosphatidylcholine diacyl (PC aa) C38:0) concerning kidney function in hyperglycemic participants of the Cooperative Health Research in the Region of Augsburg (KORA) cohort, and in two biofluids and six organs of leptin receptor-deficient (db/db) mice and wild type controls. Higher serum concentrations of SM C18:1 and PC aa C38:0 in hyperglycemic individuals were found to be associated with lower estimated glomerular filtration rate (eGFR) and higher odds of CKD. In db/db mice, both metabolites had a significantly lower concentration in urine and adipose tissue, but higher in the lungs. Additionally, db/db mice had significantly higher SM C18:1 levels in plasma and liver, and PC aa C38:0 in adrenal glands. This cross-sectional human study confirms that SM C18:1 and PC aa C38:0 associate with kidney dysfunction in pre(diabetic) individuals, and the animal study suggests a potential implication of liver, lungs, adrenal glands, and visceral fat in their systemic regulation. Our results support further validation of the two phospholipids as early biomarkers of renal disease in patients with (pre)diabetes.

4.
Diabetes ; 69(12): 2756-2765, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33024004

RESUMO

Early and precise identification of individuals with prediabetes and type 2 diabetes (T2D) at risk for progressing to chronic kidney disease (CKD) is essential to prevent complications of diabetes. Here, we identify and evaluate prospective metabolite biomarkers and the best set of predictors of CKD in the longitudinal, population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort by targeted metabolomics and machine learning approaches. Out of 125 targeted metabolites, sphingomyelin C18:1 and phosphatidylcholine diacyl C38:0 were identified as candidate metabolite biomarkers of incident CKD specifically in hyperglycemic individuals followed during 6.5 years. Sets of predictors for incident CKD developed from 125 metabolites and 14 clinical variables showed highly stable performances in all three machine learning approaches and outperformed the currently established clinical algorithm for CKD. The two metabolites in combination with five clinical variables were identified as the best set of predictors, and their predictive performance yielded a mean area value under the receiver operating characteristic curve of 0.857. The inclusion of metabolite variables in the clinical prediction of future CKD may thus improve the risk prediction in people with prediabetes and T2D. The metabolite link with hyperglycemia-related early kidney dysfunction warrants further investigation.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Aprendizado de Máquina , Estado Pré-Diabético/sangue , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Glicemia , Diabetes Mellitus Tipo 2/complicações , Humanos , Pessoa de Meia-Idade , Estado Pré-Diabético/complicações
5.
Nat Commun ; 11(1): 296, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941883

RESUMO

Regulation of cellular iron homeostasis is crucial as both iron excess and deficiency cause hematological and neurodegenerative diseases. Here we show that mice lacking iron-regulatory protein 2 (Irp2), a regulator of cellular iron homeostasis, develop diabetes. Irp2 post-transcriptionally regulates the iron-uptake protein transferrin receptor 1 (TfR1) and the iron-storage protein ferritin, and dysregulation of these proteins due to Irp2 loss causes functional iron deficiency in ß cells. This impairs Fe-S cluster biosynthesis, reducing the function of Cdkal1, an Fe-S cluster enzyme that catalyzes methylthiolation of t6A37 in tRNALysUUU to ms2t6A37. As a consequence, lysine codons in proinsulin are misread and proinsulin processing is impaired, reducing insulin content and secretion. Iron normalizes ms2t6A37 and proinsulin lysine incorporation, restoring insulin content and secretion in Irp2-/- ß cells. These studies reveal a previously unidentified link between insulin processing and cellular iron deficiency that may have relevance to type 2 diabetes in humans.


Assuntos
Insulina/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Ferro/metabolismo , RNA de Transferência de Lisina/metabolismo , tRNA Metiltransferases/metabolismo , Animais , Linhagem Celular Tumoral , Intolerância à Glucose/genética , Homeostase , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Insulinoma/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteínas Ferro-Enxofre/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , RNA de Transferência de Lisina/genética , Ratos , Resposta a Proteínas não Dobradas/genética , tRNA Metiltransferases/genética
6.
Exp Clin Endocrinol Diabetes ; 128(1): 20-29, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30396212

RESUMO

AIMS AND METHODS: Glucose homeostasis and energy balance are under control by peripheral and brain processes. Especially insulin signaling in the brain seems to impact whole body glucose homeostasis and interacts with fatty acid signaling. In humans circulating saturated fatty acids are negatively associated with brain insulin action while animal studies suggest both positive and negative interactions of fatty acids and insulin brain action. This apparent discrepancy might reflect a difference between acute and chronic fatty acid signaling. To address this question we investigated the acute effect of an intracerebroventricular palmitic acid administration on peripheral glucose homeostasis. We developed and implemented a method for simultaneous monitoring of brain activity and peripheral insulin action in freely moving mice by combining radiotelemetry electrocorticography (ECoG) and euglycemic-hyperinsulinemic clamps. This method allowed gaining insight in the early kinetics of brain fatty acid signaling and its contemporaneous effect on liver function in vivo, which, to our knowledge, has not been assessed so far in mice. RESULTS: Insulin-induced brain activity in the theta and beta band was decreased by acute intracerebroventricular application of palmitic acid. Peripherally it amplified insulin action as demonstrated by a significant inhibition of endogenous glucose production and increased glucose infusion rate. Moreover, our results further revealed that the brain effect of peripheral insulin is modulated by palmitic acid load in the brain. CONCLUSION: These findings suggest that insulin action is amplified in the periphery and attenuated in the brain by acute palmitic acid application. Thus, our results indicate that acute palmitic acid signaling in the brain may be different from chronic effects.


Assuntos
Encéfalo/metabolismo , Ácidos Graxos/metabolismo , Insulina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Glicemia/metabolismo , Encéfalo/fisiopatologia , Eletrocorticografia , Técnica Clamp de Glucose , Camundongos
7.
Cell Metab ; 25(6): 1334-1347.e4, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591636

RESUMO

The processes contributing to ß cell dysfunction in type 2 diabetes (T2D) are uncertain, largely because it is difficult to access ß cells in their intact immediate environment. We examined the pathophysiology of ß cells under T2D progression directly in pancreatic tissues. We used MALDI imaging of Langerhans islets (LHIs) within mouse tissues or from human tissues to generate in situ-omics data, which we supported with in vitro experiments. Molecular interaction networks provided information on functional pathways and molecules. We found that stearoylcarnitine accumulated in ß cells, leading to arrest of insulin synthesis and energy deficiency via excessive ß-oxidation and depletion of TCA cycle and oxidative phosphorylation metabolites. Acetylcarnitine and an accumulation of N-acyl taurines, a group not previously detected in ß cells, provoked insulin secretion. Thus, ß cell dysfunction results from enhanced insulin secretion combined with an arrest of insulin synthesis.


Assuntos
Carnitina/análogos & derivados , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Taurina/efeitos adversos , Animais , Carnitina/efeitos adversos , Carnitina/farmacologia , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Secreção de Insulina , Células Secretoras de Insulina/patologia , Camundongos , Taurina/farmacologia
9.
Mol Metab ; 6(3): 256-266, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28271032

RESUMO

OBJECTIVE: Recently, we have shown that Bezafibrate (BEZ), the pan-PPAR (peroxisome proliferator-activated receptor) activator, ameliorated diabetes in insulin deficient streptozotocin treated diabetic mice. In order to study whether BEZ can also improve glucose metabolism in a mouse model for fatty liver and type 2 diabetes, the drug was applied to TallyHo mice. METHODS: TallyHo mice were divided into an early (ED) and late (LD) diabetes progression group and both groups were treated with 0.5% BEZ (BEZ group) or standard diet (SD group) for 8 weeks. We analyzed plasma parameters, pancreatic beta-cell morphology, and mass as well as glucose metabolism of the BEZ-treated and control mice. Furthermore, liver fat content and composition as well as hepatic gluconeogenesis and mitochondrial mass were determined. RESULTS: Plasma lipid and glucose levels were markedly reduced upon BEZ treatment, which was accompanied by elevated insulin sensitivity index as well as glucose tolerance, respectively. BEZ increased islet area in the pancreas. Furthermore, BEZ treatment improved energy expenditure and metabolic flexibility. In the liver, BEZ ameliorated steatosis, modified lipid composition and increased mitochondrial mass, which was accompanied by reduced hepatic gluconeogenesis. CONCLUSIONS: Our data showed that BEZ ameliorates diabetes probably via reduced steatosis, enhanced hepatic mitochondrial mass, improved metabolic flexibility and elevated hepatic insulin sensitivity in TallyHo mice, suggesting that BEZ treatment could be beneficial for patients with NAFLD and impaired glucose metabolism.


Assuntos
Bezafibrato/farmacologia , Diabetes Mellitus/tratamento farmacológico , Fígado Gorduroso/tratamento farmacológico , Animais , Bezafibrato/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Glucose/metabolismo , Hipolipemiantes/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/sangue , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
10.
J Clin Invest ; 127(2): 695-708, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28112681

RESUMO

BACKGROUND: Dietary intake of saturated fat is a likely contributor to nonalcoholic fatty liver disease (NAFLD) and insulin resistance, but the mechanisms that initiate these abnormalities in humans remain unclear. We examined the effects of a single oral saturated fat load on insulin sensitivity, hepatic glucose metabolism, and lipid metabolism in humans. Similarly, initiating mechanisms were examined after an equivalent challenge in mice. METHODS: Fourteen lean, healthy individuals randomly received either palm oil (PO) or vehicle (VCL). Hepatic metabolism was analyzed using in vivo 13C/31P/1H and ex vivo 2H magnetic resonance spectroscopy before and during hyperinsulinemic-euglycemic clamps with isotope dilution. Mice underwent identical clamp procedures and hepatic transcriptome analyses. RESULTS: PO administration decreased whole-body, hepatic, and adipose tissue insulin sensitivity by 25%, 15%, and 34%, respectively. Hepatic triglyceride and ATP content rose by 35% and 16%, respectively. Hepatic gluconeogenesis increased by 70%, and net glycogenolysis declined by 20%. Mouse transcriptomics revealed that PO differentially regulates predicted upstream regulators and pathways, including LPS, members of the TLR and PPAR families, NF-κB, and TNF-related weak inducer of apoptosis (TWEAK). CONCLUSION: Saturated fat ingestion rapidly increases hepatic lipid storage, energy metabolism, and insulin resistance. This is accompanied by regulation of hepatic gene expression and signaling that may contribute to development of NAFLD.REGISTRATION. ClinicalTrials.gov NCT01736202. FUNDING: Germany: Ministry of Innovation, Science, and Research North Rhine-Westfalia, German Federal Ministry of Health, Federal Ministry of Education and Research, German Center for Diabetes Research, German Research Foundation, and German Diabetes Association. Portugal: Portuguese Foundation for Science and Technology, FEDER - European Regional Development Fund, Portuguese Foundation for Science and Technology, and Rede Nacional de Ressonância Magnética Nuclear.


Assuntos
Tecido Adiposo/metabolismo , Gorduras na Dieta/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Resistência à Insulina , Fígado/metabolismo , Óleos de Plantas/efeitos adversos , Tecido Adiposo/patologia , Adulto , Animais , Citocina TWEAK , Gorduras na Dieta/administração & dosagem , Humanos , Fígado/patologia , Masculino , Camundongos , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Óleo de Palmeira , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Óleos de Plantas/administração & dosagem , Fatores de Necrose Tumoral/metabolismo
11.
Diabetes ; 65(12): 3776-3785, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27621107

RESUMO

Metformin is the first-line oral medication to increase insulin sensitivity in patients with type 2 diabetes (T2D). Our aim was to investigate the pleiotropic effect of metformin using a nontargeted metabolomics approach. We analyzed 353 metabolites in fasting serum samples of the population-based human KORA (Cooperative Health Research in the Region of Augsburg) follow-up survey 4 cohort. To compare T2D patients treated with metformin (mt-T2D, n = 74) and those without antidiabetes medication (ndt-T2D, n = 115), we used multivariable linear regression models in a cross-sectional study. We applied a generalized estimating equation to confirm the initial findings in longitudinal samples of 683 KORA participants. In a translational approach, we used murine plasma, liver, skeletal muscle, and epididymal adipose tissue samples from metformin-treated db/db mice to further corroborate our findings from the human study. We identified two metabolites significantly (P < 1.42E-04) associated with metformin treatment. Citrulline showed lower relative concentrations and an unknown metabolite X-21365 showed higher relative concentrations in human serum when comparing mt-T2D with ndt-T2D. Citrulline was confirmed to be significantly (P < 2.96E-04) decreased at 7-year follow-up in patients who started metformin treatment. In mice, we validated significantly (P < 4.52E-07) lower citrulline values in plasma, skeletal muscle, and adipose tissue of metformin-treated animals but not in their liver. The lowered values of citrulline we observed by using a nontargeted approach most likely resulted from the pleiotropic effect of metformin on the interlocked urea and nitric oxide cycle. The translational data derived from multiple murine tissues corroborated and complemented the findings from the human cohort.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Citrulina/sangue , Diabetes Mellitus Tipo 2/sangue , Jejum/sangue , Humanos , Resistência à Insulina/fisiologia , Estudos Longitudinais , Masculino , Camundongos , Modelos Biológicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo
12.
Diabetes ; 65(9): 2540-52, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27284107

RESUMO

Bezafibrate (BEZ), a pan activator of peroxisome proliferator-activated receptors (PPARs), has been generally used to treat hyperlipidemia for decades. Clinical trials with type 2 diabetes patients indicated that BEZ also has beneficial effects on glucose metabolism, although the underlying mechanisms of these effects remain elusive. Even less is known about a potential role for BEZ in treating type 1 diabetes. Here we show that BEZ markedly improves hyperglycemia and glucose and insulin tolerance in mice with streptozotocin (STZ)-induced diabetes, an insulin-deficient mouse model of type 1 diabetes. BEZ treatment of STZ mice significantly suppressed the hepatic expression of genes that are annotated in inflammatory processes, whereas the expression of PPAR and insulin target gene transcripts was increased. Furthermore, BEZ-treated mice also exhibited improved metabolic flexibility as well as an enhanced mitochondrial mass and function in the liver. Finally, we show that the number of pancreatic islets and the area of insulin-positive cells tended to be higher in BEZ-treated mice. Our data suggest that BEZ may improve impaired glucose metabolism by augmenting hepatic mitochondrial performance, suppressing hepatic inflammatory pathways, and improving insulin sensitivity and metabolic flexibility. Thus, BEZ treatment might also be useful for patients with impaired glucose tolerance or diabetes.


Assuntos
Bezafibrato/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Resistência à Insulina/fisiologia , Animais , Glicemia/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Teste de Tolerância a Glucose , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/antagonistas & inibidores
13.
Nat Commun ; 6: 8261, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26383020

RESUMO

Insulin regulates glycaemia, lipogenesis and increases mRNA translation. Cells with reduced eukaryotic initiation factor 6 (eIF6) do not increase translation in response to insulin. The role of insulin-regulated translation is unknown. Here we show that reduction of insulin-regulated translation in mice heterozygous for eIF6 results in normal glycaemia, but less blood cholesterol and triglycerides. eIF6 controls fatty acid synthesis and glycolysis in a cell autonomous fashion. eIF6 acts by exerting translational control of adipogenic transcription factors like C/EBPß, C/EBPδ and ATF4 that have G/C rich or uORF sequences in their 5' UTR. The outcome of the translational activation by eIF6 is a reshaping of gene expression with increased levels of lipogenic and glycolytic enzymes. Finally, eIF6 levels modulate histone acetylation and amounts of rate-limiting fatty acid synthase (Fasn) mRNA. Since obesity, type 2 diabetes, and cancer require a Fasn-driven lipogenic state, we propose that eIF6 could be a therapeutic target for these diseases.


Assuntos
Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/genética , Células 3T3 , Acetilação , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Animais , Western Blotting , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Eletroforese em Gel de Poliacrilamida , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Glicólise/genética , Células HEK293 , Hepatócitos/metabolismo , Código das Histonas , Humanos , Ácido Láctico/metabolismo , Lipogênese/genética , Fígado/diagnóstico por imagem , Fígado/metabolismo , Células-Tronco Mesenquimais , Camundongos , Oxirredução , Fatores de Iniciação de Peptídeos/metabolismo , Radiografia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Mol Cell Proteomics ; 14(10): 2764-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26070664

RESUMO

Although it is widely accepted that ectopic lipid accumulation in the liver is associated with hepatic insulin resistance, the underlying molecular mechanisms have not been well characterized.Here we employed time resolved quantitative proteomic profiling of mice fed a high fat diet to determine which pathways were affected during the transition of the liver to an insulin-resistant state. We identified several metabolic pathways underlying altered protein expression. In order to test the functional impact of a critical subset of these alterations, we focused on the epoxyeicosatrienoic acid (EET) eicosanoid pathway, whose deregulation coincided with the onset of hepatic insulin resistance. These results suggested that EETs may be positive modulators of hepatic insulin signaling. Analyzing EET activity in primary hepatocytes, we found that EETs enhance insulin signaling on the level of Akt. In contrast, EETs did not influence insulin receptor or insulin receptor substrate-1 phosphorylation. This effect was mediated through the eicosanoids, as overexpression of the deregulated enzymes in absence of arachidonic acid had no impact on insulin signaling. The stimulation of insulin signaling by EETs and depression of the pathway in insulin resistant liver suggest a likely role in hepatic insulin resistance. Our findings support therapeutic potential for inhibiting EET degradation.


Assuntos
Eicosanoides/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Animais , Linhagem Celular , Dieta Hiperlipídica , Hepatócitos/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C3H , Proteômica , Óleo de Cártamo , Transdução de Sinais
15.
Curr Protoc Mouse Biol ; 5(1): 65-84, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25727201

RESUMO

This article presents a detailed description of intraperitoneal and oral glucose tolerance tests in mice. The former is widely used in initial high-throughput phenotyping of mutant mice to assess a diabetic phenotype and alterations in glucose homeostasis. Each protocol provides a comprehensive description of each step in the workflow, including variation of the standard protocol under particular circumstances (e.g., sensitivity to food deprivation, excessive deviations in body composition, or need for extra blood samples for additional analyses). We also describe how reduction of body mass and body temperature can be used as additional readouts to monitor metabolic function in response to food deprivation.


Assuntos
Glicemia/análise , Teste de Tolerância a Glucose , Camundongos/fisiologia , Modelos Animais , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Homeostase , Humanos
16.
Diabetes ; 64(1): 284-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25071027

RESUMO

Combined use of metformin and a sodium glucose cotransporter 2 inhibitor (SGLT2I) is a promising treatment strategy for type 2 diabetes. The mechanism by which combination treatment provides better glycemic control than metformin or SGLT2I monotherapy remains elusive. Therefore, we investigated the physiological mechanism by which both compounds lower blood glucose concentrations in diabetic mice. We compared the potential of metformin and the SGLT2I AVE2268 alone or in combination to mitigate hyperglycemia and modulate glucose fluxes in db/db and diabetic Tallyho/JngJ mice. SGLT2I treatment alone elicited a rapid decline in circulating blood glucose levels, which appeared to induce endogenous glucose production. Supplementation of metformin dampened this counterresponse, and therefore, combination therapy more efficiently maintained glycemic control. Finally, combination treatment blunted postprandial glucose excursions and improved HbA1c levels within 2 weeks. We conclude that coapplication of metformin enhances the glucose-lowering actions of SGLT2I by restraining endogenous glucose production, which may provide long-term improvement of glycemic control in type 2 diabetic patients.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/biossíntese , Glucosídeos/farmacologia , Metformina/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Técnica Clamp de Glucose , Hemoglobinas Glicadas/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo
17.
Anal Bioanal Chem ; 407(1): 343-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432303

RESUMO

Insulin resistance (IR) lies at the origin of type 2 diabetes. It induces initial compensatory insulin secretion until insulin exhaustion and subsequent excessive levels of glucose (hyperglycemia). A high-calorie diet is a major risk factor contributing to the development of this metabolic disease. For this study, a time-course experiment was designed that consisted of two groups of mice. The aim of this design was to reproduce the dietary conditions that parallel the progress of IR over time. The first group was fed with a high-fatty-acid diet for several weeks and followed by 1 week of a low-fatty-acid intake, while the second group was fed with a low-fatty-acid diet during the entire experiment. The metabolomic fingerprint of C3HeB/FeJ mice liver tissue extracts was determined by means of two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-ToF-MS). This article addresses the application of ANOVA-simultaneous component analysis (ASCA) to the found metabolomic profile. By performing hyphenated high-throughput analytical techniques together with multivariate chemometric methodology on metabolomic analysis, it enables us to investigate the sources of variability in the data related to each experimental factor of the study design (defined as time, diet and individual). The contribution of the diet factor in the dissimilarities between the samples appeared to be predominant over the time factor contribution. Nevertheless, there is a significant contribution of the time-diet interaction factor. Thus, evaluating the influences of the factors separately, as it is done in classical statistical methods, may lead to inaccurate interpretation of the data, preventing achievement of consistent biological conclusions.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Gorduras na Dieta/análise , Gorduras na Dieta/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Glicemia/análise , Glicemia/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C3H
18.
J Proteome Res ; 13(10): 4220-31, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24991707

RESUMO

A metabolic disorder such as Type-2 Diabetes mellitus (T2DM) is a complex disease induced by genetic, environmental, and nutritional factors. The db/db mouse model, bearing a nonfunctional leptin receptor, is widely used to investigate the pathophysiology of T2DM. Fecal extracts of db/db and wild-type littermates were studied to unravel a broad spectrum of new and relevant metabolites related to T2DM as proxies of the interplay of gut microbiome and murine metabolomes. The nontargeted metabolomics approach consists of an integrated analytical concept of high-resolution mass spectrometry FT-ICR-MS, followed by UPLC-TOF-MS/MS experiments. We demonstrate that a metabolic disorder such as T2DM affects the gastrointestinal tract environment, thereby influencing different metabolic pathways and their respective metabolites in diabetic mice. Fatty acids, bile acids concerning cholic and deoxycholic acid, and steroid metabolism were highly discriminative comparing fecal meta-metabolomes of wt and db/db mice. Furthermore, sulfur-(S)-containing metabolites including N-acyl taurines were altered in diabetic mice, enabling us to focus on S-containing metabolites, especially the sulfate and taurine conjugates of bile and fatty acids. Different sulfate containing bile acids including sulfocholic acid, oxocholic acid sulfate, taurocholic acid sulfate, and cyprinol sulfate were significantly altered in diabetic mice. Moreover, we identified 12 new sulfate and taurine conjugates of hydroxylated fatty acids with significant importance in T2DM metabolism in db/db mice.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fezes , Metabolômica , Enxofre/metabolismo , Animais , Estudos de Casos e Controles , Camundongos , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem
19.
ISME J ; 8(12): 2380-96, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24906017

RESUMO

A combinatory approach using metabolomics and gut microbiome analysis techniques was performed to unravel the nature and specificity of metabolic profiles related to gut ecology in obesity. This study focused on gut and liver metabolomics of two different mouse strains, the C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative sequence analysis using 454 pyrosequencing detected significant differences between the microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J phenotype likely displaying different energy utilization behavior by the bacterial community and the host. Furthermore, several metabolite groups could specifically be associated with the C57N phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based metabolite network approach enabled to extend the range of known metabolites to important bile acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced obesity mouse model in relation to the host-microbial nutritional adaptation.


Assuntos
Trato Gastrointestinal/microbiologia , Metaboloma , Microbiota , Obesidade/metabolismo , Obesidade/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Dieta Hiperlipídica , Fígado/metabolismo , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem
20.
Diabetologia ; 57(1): 192-203, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24078137

RESUMO

AIMS/HYPOTHESIS: Diabetic retinopathy is a major complication of type 2 diabetes and the leading cause of blindness in adults of working age. Neuronal defects are known to occur early in disease, but the source of this dysfunction is unknown. The aim of this study was to examine differences in the retinal membrane proteome among non-diabetic mice and mouse models of diabetes either with or without metformin treatment. METHODS: Alterations in the retinal membrane proteome of 10-week-old diabetic db/db mice, diabetic db/db mice orally treated with the anti-hyperglycaemic metformin, and congenic wild-type littermates were examined using label-free mass spectrometry. Pathway enrichment analysis was completed with Genomatix and Ingenuity. Alterations in Slc17a7 mRNA and vesicular glutamate transporter 1 (VGLUT1) protein expression were evaluated using real-time quantitative PCR and IMMUNOFLUORESCENCE. RESULTS: A total of 98 proteins were significantly differentially abundant between db/db and wild-type animals. Pathway enrichment analysis indicated decreases in levels of proteins related to synaptic transmission and cell signalling. Metformin treatment produced 63 differentially abundant proteins compared with untreated db/db mice, of which only 43 proteins were found to occur in both datasets, suggesting that treatment only partially normalises the alterations induced by diabetes. VGLUT1, which is responsible for loading glutamate into synaptic vesicles, was found to be differentially abundant in db/db mice and was not normalised by metformin. The decrease in Slc17a7/VGLUT1 was confirmed by transcriptomic and immunocytochemical analysis. CONCLUSIONS/INTERPRETATION: These findings expand the knowledge of the protein changes in diabetic retinopathy and suggest that membrane-associated signalling proteins are susceptible to changes that are partially ameliorated by treatment


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Proteoma/metabolismo , Retina/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA