Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978796

RESUMO

Acute and chronic lung injuries are among the leading causes of mortality worldwide. Lung injury can affect several components of the respiratory system, including the airways, parenchyma, and pulmonary vasculature. Although acute and chronic lung injuries represent an enormous economic and clinical burden, currently available therapies primarily focus on alleviating disease symptoms rather than reversing and/or preventing lung pathology. Moreover, some supportive interventions, such as oxygen and mechanical ventilation, can lead to (further) deterioration of lung function and even the development of permanent injuries. Lastly, sepsis, which can originate extrapulmonary or in the respiratory system itself, contributes to many cases of lung-associated deaths. Considering these challenges, we aim to summarize molecular and cellular mechanisms, with a particular focus on airway inflammation and oxidative stress that lead to the characteristic pathophysiology of acute and chronic lung injuries. In addition, we will highlight the limitations of current therapeutic strategies and explore new antioxidant-based drug options that could potentially be effective in managing acute and chronic lung injuries.

2.
J Biomed Mater Res B Appl Biomater ; 110(6): 1234-1244, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34894049

RESUMO

Inhalation of harmful particles appears as a primary factor for the onset and establishment of chronic obstructive pulmonary disease (COPD). Cigarette smoke acutely promotes an exacerbated inflammatory response with oxidative stress induction with DNA damage. Administration of Gold Nanoparticles (GNPs) with 20 nm in different concentrations can revert damages caused by external aggravations. The effects of GNPs in a COPD process have not been observed until now. The objective of this work was to evaluate the therapeutic effects of intranasal administration of different doses of GNPs after acute exposure to industrial cigarette smoke. Thirty male Swiss mice were randomly divided into five groups: Sham; cigarette smoke (CS); CS + GNPs 2.5 mg/L; CS + GNPs 7.5 mg/L and CS + GNPs 22.5 mg/L. The animals were exposed to the commercial cigarette with filter in an acrylic inhalation chamber and treated with intranasal GNPs for five consecutive days. The results demonstrate that exposure to CS causes an increase in inflammatory cytokines, histological changes, oxidative and nitrosive damage in the lung, as well as increased damage to the DNA of liver cells, blood plasma and lung. Among the three doses of GNPs (2.5, 7.5, and 22.5 mg/L) used, the highest dose had better anti-inflammatory effects. However, GNPs at a dose of 7.5 mg/L showed better efficacies in reducing ROS formation, alveolar diameter, and the number of inflammatory cells in histology, in addition to significantly reduced rate of DNA damage in lung cells without additional systemic genotoxicity already caused by cigarette smoke.


Assuntos
Fumar Cigarros , Nanopartículas Metálicas , Doença Pulmonar Obstrutiva Crônica , Administração Intranasal , Animais , Líquido da Lavagem Broncoalveolar , Ouro/farmacologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Nicotiana
3.
Ecotoxicol Environ Saf ; 191: 110211, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978763

RESUMO

This study aimed to verify possible alterations involving histological and oxidative stress parameters in the lungs of wild bats in the Carboniferous Basin of Santa Catarina (CBSC) state, Southern Brazil, as a means to evaluate the impact of coal dust on the health of wildlife. Specimens of frugivorous bat species Artibeus lituratus and Sturnira lilium were collected from an area free of coal dust contamination and from coal mining areas. Chemical composition, histological parameters, synthesis of oxidants and antioxidant enzymes, and oxidative damage in the lungs of bats were analyzed. Levels of Na, Cl, Cu, and Br were higher in both species collected in the CBSC than in the controls. Levels of K and Rb were higher in A. lituratus, and levels of Si, Ca, and Fe were higher in S. lilium collected in the carboniferous basin. Both bat species inhabiting the CBSC areas exhibited an increase in the degree of pulmonary emphysema compared to their counterparts collected from control areas. Sturnira lilium showed increased reactive oxygen species (ROS) and 2',7'-dichlorofluorescein (DCF) levels, while A. lituratus showed a significant decrease in nitrite levels in the CBSC samples. Superoxide dismutase (SOD) activity did not change significantly; however, the activity of catalase (CAT) and levels of glutathione (GSH) decreased in the A. lituratus group from CBSC compared to those in the controls. There were no differences in NAD(P)H quinone dehydrogenase 1 protein (NQO1) abundance or nitrotyrosine expression among the different groups of bats. Total thiol levels showed a significant reduction in A. lituratus from CBSC, while the amount of malondialdehyde (MDA) was higher in both A. lituratus and S. lilium groups from coal mining areas. Our results suggested that bats, especially A. lituratus, living in the CBSC could be used as sentinel species for harmful effects of coal dust on the lungs.


Assuntos
Quirópteros , Minas de Carvão , Carvão Mineral/toxicidade , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Brasil , Catalase/metabolismo , Quirópteros/anatomia & histologia , Quirópteros/metabolismo , Poeira , Glutationa/metabolismo , Pulmão/anatomia & histologia , Pulmão/química , Pulmão/metabolismo , Malondialdeído/metabolismo , Metais/análise , Modelos Biológicos , Enfisema Pulmonar/veterinária , Espécies Reativas de Oxigênio/metabolismo
4.
J Drug Target ; 28(1): 46-54, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31046473

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive hereditary myopathy characterised by progressive muscle degeneration in male children. As a consequence of DMD, increased inflammation and oxidative stress occur in muscle tissue along with morphological changes. Several studies have reported anti-inflammatory and antioxidant effects of gold nanoparticles (GNP) in muscle injury models. The objective of this study was to evaluate these effects along with the impacts of the disease on histopathological changes following chronic administration of GNP to Mdx mice. Two-month-old Mdx mice were separated into five groups of eight individuals each, as follows: wild-type (WT), Mdx-modified without treatment, Mdx + 2.5 mg/kg GNP, Mdx + 7.0 mg/kg GNP and Mdx + 21 mg/kg GNP. GNP with a mean diameter of 20 nm were injected subcutaneously at concentrations of 2.5, 7.0 and 21 mg/kg. Treatments continued for 30 d with injections administered at 48-h intervals. Twenty-four hours after the last injection, the animals were killed and the central region of the gastrocnemius muscle was surgically removed. Chronic administration of GNP reduced inflammation in the gastrocnemius muscle of Mdx mice and reduced morphological alterations due to inflammatory responses to muscular dystrophy. In addition, GNP also demonstrated antioxidant potential by reducing the production of reactive oxygen and nitrogen species, reducing oxidative damage and improving antioxidant activity.


Assuntos
Ouro/farmacologia , Mediadores da Inflamação/metabolismo , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
J Drug Target ; 28(3): 307-319, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31379221

RESUMO

Studies have shown the benefits of gold nanoparticles (GNPs) in muscle and epithelial injury models. In physiotherapy, the use of the microcurrent apparatus is associated with certain drugs (Iontophoresis) to increase the topical penetration and to associate the effects of both therapies. Therefore, the objective of this study was to investigate the effects of iontophoresis along with GNPs in the skeletal muscle of rats exposed to a traumatic muscle injury. We utilised 50 Wistar rats randomly divided in to five experimental groups (n = 10): Control group (CG); Muscle injury group (MI); MI + GNPs (20 nm, 30 mg kg-1); MI + Microcurrent (300 µA); and MI + Microcurrent + GNPs. The treatment was performed daily for 7 days, with the first session starting at 24 h after the muscle injury. The animals were sacrificed and the gastrocnemius muscle was surgically removedand stored for the proper evaluations. The group that received iontophoresis with GNPs showed significant differences in inflammation and oxidative stress parameters and in the histopathological evaluation showed preserved morphology. In addition, we observed an improvement in the locomotor response and pain symptoms of these animals. These results suggest that the association of boththerapies accelerates the inflammatory response of the injured limb.


Assuntos
Ouro/química , Iontoforese/métodos , Nanopartículas Metálicas/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Músculo Esquelético/lesões , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
6.
J Biomed Mater Res A ; 108(1): 103-115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502356

RESUMO

The bacterial lipopolysaccharide (LPS) is a highly toxic molecule derived from the outer membrane of gram-negative bacteria. LPS endotoxin affects the lungs and is used as a model of acute pulmonary inflammation affecting the cellular morphology of the organ. Previously, gold nanoparticles (GNPs) have been shown to demonstrate anti-inflammatory and antioxidative activity in muscle and epithelial injury models. The objective of this study was to investigate the effect of the intraperitoneal treatment using GNPs on the inflammatory response and pulmonary oxidative stress induced by LPS. Wistar rats were divided into four groups (N = 10): Sham; Sham + GNPs 2.5 mg/kg; LPS; and LPS + GNPs 2.5 mg/kg. Treatment with LPS upregulated the levels of markers of cellular and hepatic damage (CK, LDH, AST, and alanine aminotransferase); however, the group treated with only GNPs exhibited no toxicity. Treatment with GNPs reversed LPS-induced changes with respect to total peritoneal leukocyte count and the pulmonary levels of pro-inflammatory cytokines (IFN-γ and IL-6). Histological analysis revealed that treatment with GNPs reversed the increase in alveolar septum thickness due to LPS-induced fibrosis. In addition, treatment with GNPs decreased production of oxidants (nitrite and DCFH), reduced oxidative damage (carbonyl and sulfhydryl), and downregulated activities of superoxide dismutase and catalase. Treatment with GNPs did not showed toxicity; however, it exhibited anti-inflammatory and antioxidative activity that reversed morphological alterations induced by LPS.


Assuntos
Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Pneumonia/patologia , Pneumonia/terapia , Doença Aguda , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Pulmão/patologia , Masculino , Nanopartículas Metálicas/ultraestrutura , Estresse Oxidativo , Pneumonia/enzimologia , Ratos Wistar , Espectrofotometria Ultravioleta
7.
Arch Biochem Biophys ; 661: 50-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414729

RESUMO

The present study sought to evaluate the effects of physical training on histological parameters and oxidative stress in the myocardium of mice chronically exposed to hand-rolled cornhusk cigarette (HRCC) smoke. Male Swiss mice (60 days old, 30-35 g) were either exposed to ambient air or passively exposed to the smoke of 12 cigarettes daily over 3 sessions (4 cigarettes per session) for 60 consecutive days with or without physical training for 8 weeks. Forty-eight hours after the last training session, the heart was surgically removed for histological analysis and measurement of oxidative stress parameters. Histological imaging revealed cell disruption, with poorly defined nuclei, in the mice exposed to HRCC smoke, but not in the control group. However, mice exposed to HRCC smoke with physical training displayed signs of tissue repair and improved tissue integrity. Biochemical analysis revealed decreased production of superoxide, 2',7'-dichlorofluorescein (DCF), and nitrite, as well as decreased protein carbonylation, in the physical training groups, likely due to the exercise-induced increase in glutathione peroxidase (GPX) activity and glutathione (GSH) content. Taken together, our results suggest that physical exercise exerts cardioprotective effects by modulating the redox responses in animals exposed to HRCC smoke.


Assuntos
Glutationa Peroxidase/metabolismo , Glutationa/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal , Carbonilação Proteica , Fumar/metabolismo , Animais , Masculino , Camundongos , Miocárdio/patologia , Fumar/patologia
8.
Free Radic Res ; 51(7-8): 708-722, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28776450

RESUMO

Asthma is an allergic inflammation driven by the Th2 immune response with release of cytokines such as IL-4 and IL-13, which contribute to the airflow limitations and airway hyperresponsiveness (AHR). The involvement of oxidative stress in this process is well-established, but the specific role of the superoxide anion and nitric oxide in asthma are poorly understood. Thus, the aim of this study was to investigate the mechanisms underlying the superoxide anion/nitric oxide production and detoxification in a murine asthma model. BALB/c male mice were sensitised and challenged with ovalbumin (OVA). Pretreatments with either apocynin (14 mg/kg) or allopurinol (25 mg/kg) (superoxide anion synthesis inhibitors), aminoguanidine (50 mg/kg) (nitric oxide synthesis inhibitor) or diethyldithiocarbamate (100 mg/kg) (superoxide dismutase inhibitor) were performed 1 h before the challenge. Our data showed that apocynin and allopurinol ameliorated AHR and reduced eosinophil peroxidase, as well as IL-4 and IL-13 levels. Apocynin also abrogated leukocyte peribronchiolar infiltrate and increased IL-1ß secretion. Aminoguanidine preserved lung function and shifted the Th2 to the Th1 response with a reduction of IL-4 and IL-13 and increase in IL-1ß production. Diethyldithiocarbamate prevented neither allergen-induced AHR nor eosinophil peroxidase (EPO) generation. All treatments protected against oxidative damage observed by a reduction in TBARS levels. Taken together, these results suggest that AHR in an asthma model can be avoided by the down-regulation of superoxide anion and nitric oxide synthesis in a mechanism that is independent of a redox response. This down-regulation is also associated with a transition in the typical immunological Th2 response toward the Th1 profile.


Assuntos
Asma/imunologia , Inflamação/imunologia , Óxido Nítrico/antagonistas & inibidores , Hipersensibilidade Respiratória/imunologia , Superóxidos/antagonistas & inibidores , Acetofenonas/administração & dosagem , Alopurinol/administração & dosagem , Animais , Asma/metabolismo , Asma/patologia , Modelos Animais de Doenças , Peroxidase de Eosinófilo/imunologia , Peroxidase de Eosinófilo/metabolismo , Guanidinas/administração & dosagem , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos , Óxido Nítrico/imunologia , Ovalbumina/imunologia , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Superóxidos/imunologia , Células Th1/imunologia , Células Th2/imunologia
9.
Mater Sci Eng C Mater Biol Appl ; 77: 1145-1150, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531990

RESUMO

Gold nanoparticles (GNPs) have antioxidant and anti-inflammatory effects. However, toxicity is still a concern; therefore, it is critical to study both the therapeutic and toxic properties of GNPs. In this study, we evaluated the effects of the intraperitoneal administration of GNPs (20nm, at a concentration of 2.5mg/L for 21days) every 24 or 48h on oxidative stress, antioxidant status, and electron chain transport (ETC) in the brain. Liver histology and blood marker analyses were conducted to establish a time routine of GNP administration. The concentrations of GNP in the brain and liver were similar. Hepatic and serum levels of cholesterol, triglycerides, and transaminases were not altered after the administration of GNP every 24 or 48h. The superoxide and nitric oxide levels were unchanged after administration of GNP. Dichlorodihydrofluorescein (DCFH) levels decreased after the administration of GNP every 48h compared with that in the saline group. Sulfhydryl and carbonyl levels, as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and glutathione (GSH) activities were not altered in the brain after administration of GNP in the two time periods studied. The GNP 48h group showed increased brain ETC activity. Compared to that in the saline group, the GNP 24h group showed marked parenchyma changes with cell necrosis and leukocyte infiltration. We therefore suggest that a concentration of 2.5mg/L of GNP administered every 48h has potential therapeutic benefits without toxicity.


Assuntos
Nanopartículas Metálicas , Animais , Antioxidantes , Catalase , Glutationa , Glutationa Peroxidase , Ouro , Estresse Oxidativo , Ratos , Ratos Wistar
10.
Inflammation ; 40(4): 1166-1176, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28391514

RESUMO

Ovalbumin-induced allergic lung inflammation (ALI) is a condition believed to be mediated by cytokines, extracellular matrix remodeling, and redox imbalance. In this study, we evaluated pulmonary function together with inflammatory markers as interleukin-4 (IL-4), myeloperoxidase (MPO), eosinophil cells, and redox markers in the lungs of BALB/c mice after ovalbumin (OVA) sensitization and challenge. Our results showed an increase in bronchial hyperresponsiveness stimulated by methacholine (Mch), inflammatory cell influx, especially eosinophils together with an increase of high mobility group box 1 (HMGB1) and altered lipid peroxidation (LP) and antioxidant defenses in the OVA group compared to the control group (p ≤ 0.5). Thus, we demonstrated that OVA-induced ALI altered redox status concomitantly with impaired lung function, which was associated with HMGB1 expression and proteolytic remodeling. Taken together all results found here, we may suggest HMGB1 is an important therapeutic target for asthma, once orchestrates the redox signaling, inflammation, and remodeling that contribute to the disease development.


Assuntos
Asma/metabolismo , Asma/patologia , Proteína HMGB1/metabolismo , Inflamação , Estresse Oxidativo , Animais , Biomarcadores/análise , Hiper-Reatividade Brônquica , Eosinófilos , Inflamação/diagnóstico , Inflamação/imunologia , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Estresse Oxidativo/imunologia , Proteólise
11.
Mol Neurobiol ; 54(10): 7928-7937, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27878552

RESUMO

Aging is associated with impaired cognition and memory and increased susceptibility to neurodegenerative disorders. Physical exercise is neuroprotective; however, the major evidence of this effect involves studies of only aerobic training in young animals. The benefits of other exercise protocols such as strength training in aged animals remains unknown. Here, we investigated the effect of aerobic and strength training on spatial memory and hippocampal plasticity in aging rats. Aging Wistar rats performed aerobic or strength training for 50 min 3 to 4 days/week for 8 weeks. Spatial memory and neurotrophic and glutamatergic signaling in the hippocampus of aged rats were evaluated after aerobic or strength training. Both aerobic and strength training improved cognition during the performance of a spatial memory task. Remarkably, the improvement in spatial memory was accompanied by an increase in synaptic plasticity proteins within the hippocampus after exercise training, with some differences in the intracellular functions of those proteins between the two exercise protocols. Moreover, neurotrophic signaling (CREB, BDNF, and the P75NTR receptor) increased after training for both exercise protocols, and aerobic exercise specifically increased glutamatergic proteins (NMDA receptor and PSD-95). We also observed a decrease in DNA damage after aerobic training. In contrast, strength training increased levels of PKCα and the proinflammatory factors TNF-α and IL-1ß. Overall, our results show that both aerobic and strength training improved spatial memory in aging rats through inducing distinct molecular mechanisms of neuroplasticity. Our findings extend the idea that exercise protocols can be used to improve cognition during aging.


Assuntos
Envelhecimento , Cognição/fisiologia , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal , Memória Espacial/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Masculino , Condicionamento Físico Animal/métodos , Ratos Wistar , Treinamento Resistido/métodos
12.
Artigo em Inglês | MEDLINE | ID: mdl-27042047

RESUMO

Reactive oxygen species (ROS) are important in the pathogenesis of pulmonary injury induced by cigarette smoke (CS) exposure, and physical exercise (Ex) is useful in combating impaired oxidative process. We verified the preventive effects of Ex on lung oxidative markers induced by smoking. In this study, 36 mice (C57BL-6, 30-35 g) were split into four groups: control, CS, Ex, and CS plus Ex. Ex groups were given prior physical training in water (2×30 min/d, 5 days/wk, 8 weeks). After training, the CS groups were subjected to passive exposure to four cigarettes, 3 × per day, for 60 consecutive days. After 24 hours from the last exposure, CS animals were sacrificed, and lung samples were collected for further analysis. Left lung sample was prepared for histological analysis, and right lung was used for biochemical analysis (superoxide, hydroxyproline, lipid peroxidation [thiobarbituric acid reactive species], protein carbonylation [carbonyl groups formation], superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx] activities). Group comparisons were evaluated by analysis of variance (ANOVA). Results were expressed as mean ± standard deviation, with P<0.05 considered significantly different. Preventive Ex impeded histological changes and increased the enzymatic defense system (SOD and GPx) by reducing oxidative damage in lipids and proteins. This preventive effect of prior physical Ex alleviates damage caused by CS exposure.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
J Bras Pneumol ; 40(4): 411-20, 2014.
Artigo em Inglês, Português | MEDLINE | ID: mdl-25210964

RESUMO

OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.


Assuntos
Diafragma , Pulmão , Estresse Oxidativo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Diafragma/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
J. bras. pneumol ; 40(4): 411-420, Jul-Aug/2014. graf
Artigo em Inglês | LILACS | ID: lil-721461

RESUMO

OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD. .


OBJETIVO: Avaliar o dano oxidativo (oxidação lipídica, oxidação proteica, thiobarbituric acid-reactive substances [TBARS, substâncias reativas ao ácido tiobarbitúrico], e carbonilação) e inflamação (expressão de phosphorylated AMP-activated protein kinase e de phosphorylated mammalian target of rapamycin (p-AMPK e p-mTOR, respectivamente) em tecido pulmonar e músculos do diafragma em camundongos C57BL/6 machos expostos à fumaça de cigarro (FC) por 7, 15, 30, 45 ou 60 dias. MÉTODOS: Trinta e seis camundongos machos da espécie C57BL/6 foram divididos em seis grupos (n = 6/grupo): grupo controle e 5 grupos expostos a FC por 7, 15, 30, 45 e 60 dias, respectivamente. RESULTADOS: Comparados aos camundongos controle, os camundongos expostos à FC apresentaram menor peso corporal em 30 dias. Nos camundongos expostos à FC (comparados aos controle) as maiores diferenças (aumentos) nos níveis de TBARS foram observados no dia 7 no músculo diafragma, comparado ao dia 45 em tecido pulmonar; as maiores diferenças (aumentos) nos níveis de carbonilas foram observados no dia 7 em ambos os tipos de tecido; e os níveis de sulfidrilas foram menores, nos dois tipos de tecidos, em todos os tempos. No tecido pulmonar e no músculo diafragma, a expressão de p-AMPK exibiu um comportamento semelhante ao dos níveis de TBARS. A expressão de p-mTOR foi maior que o valor controle nos dias 7 e 15 no tecido pulmonar, assim como no dia 45 no músculo diafragma. CONCLUSÕES: Nossos dados demonstram que a exposição à FC produz dano oxidativo tanto no tecido pulmonar quanto (primariamente) no tecido muscular, tendo um efeito adicional no músculo respiratório, como é frequentemente observado em fumantes com DPOC. .


Assuntos
Animais , Masculino , Camundongos , Diafragma , Pulmão , Estresse Oxidativo , Poluição por Fumaça de Tabaco/efeitos adversos , Diafragma/patologia , Pulmão/patologia
15.
Bioorg Med Chem ; 21(24): 7570-7, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24262889

RESUMO

Propolis is a natural product with antioxidant properties. In this study, we tested the efficacy of propolis against acute lung inflammation (ALI) caused by cigarette smoke (CS). C57BL6 male mice were exposed to CS and treated with propolis (200mg/kg orally, CS+P) or only with propolis (P). A Control group treated with propolis was sham-smoked (Control+P). We collected the lungs for histological and biochemical analyses. We observed an increase in alveolar macrophages and neutrophils in the CS group compared with the Control+P. These counts reduced in the CS+P group compared to the CS group. The treatment with propolis normalized all biochemical parameters in the CS+P group compared with the CS group, including nitrite, myeloperoxidase level, antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase), reduced glutathione/oxidized glutathione ratio and malondialdehyde. Additionally, TNF-α expression reduced in the CS+P group when compared with the CS group. These data imply a potential antioxidant and anti-inflammatory role for propolis with regard to ALI caused by CS in mice.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Pulmão/efeitos dos fármacos , Própole/farmacologia , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Antioxidantes/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Própole/metabolismo , Fatores de Tempo
16.
Free Radic Biol Med ; 53(11): 1993-2001, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23000243

RESUMO

Our aim was to investigate the role of oxidative stress in elastase-induced pulmonary emphysema. C57BL/6 mice were subjected to pancreatic porcine elastase (PPE) instillation (0.05 or 0.5 U per mouse, i.t.) to induce pulmonary emphysema. Lungs were collected on days 7, 14, and 21 after PPE instillation. The control group was sham injected. Also, mice treated with 1% aminoguanidine (AMG) and inducible NO synthase (iNOS) knockout mice received 0.5 U PPE (i.t.), and lungs were analyzed 21 days after. We performed bronchoalveolar lavage, biochemical analyses of oxidative stress, and lung stereology and morphometry assays. Emphysema was observed histologically at 21 days after 0.5 U PPE treatment; tissues from these mice exhibited increased alveolar linear intercept and air-space volume density in comparison with the control group. TNF-α was elevated at 7 and 14 days after 0.5 U PPE treatment, concomitant with a reduction in the IL-10 levels at the same time points. Myeloperoxidase was elevated in all groups treated with 0.5 U PPE. Oxidative stress was observed during early stages of emphysema, with increased nitrite levels and malondialdehyde and superoxide dismutase activity at 7 days after 0.5 U PPE treatment. Glutathione peroxidase activity was increased in all groups treated with 0.5 U PPE. The emphysema was attenuated when iNOS was inhibited using 1% AMG and in iNOS knockout mice. Furthermore, proteolytic stimulation by PPE enhanced the expression of nitrotyrosine and iNOS, whereas the PPE+AMG group showed low expression of iNOS and nitrotyrosine. PPE stimulus also induced endothelial (e) NOS expression, whereas AMG reduced eNOS. Our results suggest that the oxidative and nitrosative stress pathways are triggered by nitric oxide production via iNOS expression in pulmonary emphysema.


Assuntos
Estresse Oxidativo , Enfisema Pulmonar/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Animais , Glutationa Peroxidase/metabolismo , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Leucócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Elastase Pancreática , Proteólise , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/patologia , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
17.
Toxicol Pathol ; 40(5): 731-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22549973

RESUMO

The development of bleomycin-induced pulmonary fibrosis (BLEO-PF) has been associated with differences in genetic background and oxidative stress status. The authors' aim was to investigate the crosstalk between the redox profile, lung histology, and respiratory function in BLEO-PF in C57BL/6, DBA/2, and BALB/c mice. BLEO-PF was induced with a single intratracheal dose of bleomycin (0.1 U/mouse). Twenty-one days after bleomycin administration, the mortality rate was over 50% in C57BL/6 and 20% in DBA/2 mice, and BLEO-PF was not observed in BALB/c. There was an increase in lung static elastance (p < .001), viscoelastic/inhomogeneous pressure (p < .05), total pressure drop after flow interruption (p < .01), and ΔE (p < .05) in C57BL/6 mice. The septa volume increased in C57BL/6 (p < .05) and DBA/2 (p < .001). The levels of IFN-γ were reduced in C57BL/6 mice (p < .01). OH-proline levels were increased in C57BL/6 and DBA/2 mice (p < .05). SOD activity and expression were reduced in C57BL/6 and DBA/2 mice (p < .001 and p < .001, respectively), whereas catalase was reduced in all strains 21 days following bleomycin administration compared with the saline groups (C57BL/6: p < .05; DBA/2: p < .01; BALB/c: p < .01). GPx activity and GPx1/2 expression decreased in C57BL/6 (p < .001). The authors conclude that BLEO-PF resistance may also be related to the activity and expression of SOD in BALB/c mice.


Assuntos
Bleomicina/efeitos adversos , Estresse Oxidativo , Fibrose Pulmonar/patologia , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Animais , Bleomicina/metabolismo , Regulação da Expressão Gênica , Glutationa Peroxidase/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Oxirredução , Fibrose Pulmonar/induzido quimicamente , Superóxido Dismutase/metabolismo , Glutationa Peroxidase GPX1
18.
Phytomedicine ; 19(3-4): 262-9, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22138278

RESUMO

Short term inhalation of cigarette smoke (CS) induces significant lung inflammation due to an imbalance of oxidant/antioxidant mechanisms. Açai fruit (Euterpe oleracea) has significant antioxidant and anti-inflammatory actions. The present study aimed to determine whether oral administration of an açai stone extract (ASE) could reduce lung inflammation induced by CS. Thirty C57BL/6 mice were assigned to three groups (n=10 each): the Control+A group was exposed to ambient air and treated orally with ASE 300 mg/kg/day; the CS group was exposed to smoke from 6 cigarettes per day for 5 days; and the CS+A group was exposed to smoke from 6 cigarettes per day for 5 days and treated orally with ASE (300 mg/kg/day). On day 6, all mice were sacrificed. After bronchoalveolar lavage, the lungs were removed for histological and biochemical analyses. The CS group exhibited increases in alveolar macrophage (AMs) and neutrophil numbers (PMNs), myeloperoxidase (MPO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase activities (GPx), TNF-α expression, and nitrites levels in lung tissue when compared with the control ones (p<0.001 for all parameters). The AMs, PMNs, MPO, SOD, CAT, GPx and nitrite were significantly reduced by oral administration of ASE when compared with CS group (p<0.001 for all parameters, with exception of AMs p<0.01). The present results suggested that systemic administration of an ASE extract could reduce the inflammatory and oxidant actions of CS. Thus, the results of this study in mice should stimulate future studies on ASE as a potential agent to protect against CS-induced inflammation in humans.


Assuntos
Arecaceae/química , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Fumar/efeitos adversos , Administração Oral , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Lavagem Broncoalveolar , Catalase/química , Movimento Celular/efeitos dos fármacos , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Glutationa Peroxidase/química , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macrófagos Alveolares/química , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/química , Neutrófilos/efeitos dos fármacos , Nitritos/química , Oxirredução , Peroxidase/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pneumonia/patologia , Superóxido Dismutase/química
19.
Pulm Pharmacol Ther ; 24(5): 587-94, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21624489

RESUMO

Nitric oxide (NO) represents one of the most important intra- and extracellular mediators and takes part in both biologic and pathologic processes. This study aimed to verify the treatment with an NO inhibitor and an NO substrate in pulmonary emphysema induced by cigarette smoke (CS) in a murine model. We compared N-acetylcysteine (NAC), a precursor of glutathione, to G-nitro-L-arginine-methyl ester or L-NAME (LN), which is an NO inhibitor, and to l-arginine (LA), which is a substrate for NO formation. Mice were divided into several groups: control, CS, CS + LN, CS + LA, and CS + NAC. Control and CS groups were treated daily with a vehicle, while CS + LN, CS + LA, and CS + NAC groups were treated daily with LN (60 mg/kg), LA (120 mg/kg) and NAC (200 mg/kg), respectively. The bronchoalveolar lavage was analyzed and the lungs were removed for histological and biochemical analysis. CS increases neutrophil number. Neutrophil number was lowest in CS + LN, followed by CS + LA. The lungs of CS + LN, CS + LA and CS + NAC mice were protected compared to the lungs of CS mice, but not equal to the quality of lungs in control mice. The CS group also exhibited increased oxidative stress, which was also present in the CS + LN group and to a lesser extent in the CS + LA group. Tissue inhibitor of metalloproteinase 1 and 2 increased in the CS + LN group and to a lesser extent in the CS + LA group relative to the control group. These results suggest that LN and LA treatment protected the mouse lung from CS. However, NAC treatment was more than LN and LA. We suggest that the protection conferred by LN treatment requires a balance between proteases and antiproteases, and that protection conferred by LA treatment involves the balance between oxidants and antioxidants.


Assuntos
Arginina/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Enfisema Pulmonar/prevenção & controle , Fumaça/efeitos adversos , Acetilcisteína/farmacologia , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Óxido Nítrico/metabolismo , Oxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Enfisema Pulmonar/etiologia , Fumar/efeitos adversos , Nicotiana
20.
Food Chem Toxicol ; 49(4): 855-63, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21147193

RESUMO

Chronic inhalation of cigarette smoke (CS) induces emphysema by the damage contributed by oxidative stress during inhalation of CS. Ingestion of açai fruits (Euterpe oleracea) in animals has both antioxidant and anti-inflammatory effects. This study compared lung damage in mice induced by chronic (60-day) inhalation of regular CS and smoke from cigarettes containing 100mg of hydroalcoholic extract of açai berry stone (CS + A). Sham smoke-exposed mice served as the control group. Mice were sacrificed on day 60, bronchoalveolar lavage was performed, and the lungs were removed for histological and biochemical analyses. Histopathological investigation showed enlargement of alveolar space in CS mice compared to CS + A and control mice. The increase in leukocytes in the CS group was higher than the increase observed in the CS + A group. Oxidative stress, as evaluated by antioxidant enzyme activities, mieloperoxidase, glutathione, and 4-hydroxynonenal, was reduced in mice exposed to CS+A versus CS. Macrophage and neutrophil elastase levels were reduced in mice exposed to CS + A versus CS. Thus, the presence of açai extract in cigarettes had a protective effect against emphysema in mice, probably by reducing oxidative and inflammatory reactions. These results raise the possibility that addition of açaí extract to normal cigarettes could reduce their harmful effects.


Assuntos
Arecaceae/química , Enfisema/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Líquido da Lavagem Broncoalveolar , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA