Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Bioelectron Med ; 9(1): 9, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118841

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making. METHODS: We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks. RESULTS: VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs. CONCLUSIONS: We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.

2.
Front Neurosci ; 15: 613844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790731

RESUMO

Sieve electrodes stand poised to deliver the selectivity required for driving advanced prosthetics but are considered inherently invasive and lack the stability required for a chronic solution. This proof of concept experiment investigates the potential for the housing and engagement of a sieve electrode within the medullary canal as part of an osseointegrated neural interface (ONI) for greater selectivity toward improving prosthetic control. The working hypotheses are that (A) the addition of a sieve interface to a cuff electrode housed within the medullary canal of the femur as part of an ONI would be capable of measuring efferent and afferent compound nerve action potentials (CNAPs) through a greater number of channels; (B) that signaling improves over time; and (C) that stimulation at this interface generates measurable cortical somatosensory evoked potentials through a greater number of channels. The modified ONI was tested in a rabbit (n = 1) amputation model over 12 weeks, comparing the sieve component to the cuff, and subsequently compared to historical data. Efferent CNAPs were successfully recorded from the sieve demonstrating physiological improvements in CNAPs between weeks 3 and 5, and somatosensory cortical responses recorded at 12 weeks postoperatively. This demonstrates that sieve electrodes can be housed and function within the medullary canal, demonstrated by improved nerve engagement and distinct cortical sensory feedback. This data presents the conceptual framework for housing more sophisticated sieve electrodes in bone as part of an ONI for improving selectivity with percutaneous connectivity toward improved prosthetic control.

3.
Brain Stimul ; 13(4): 1024-1030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32388045

RESUMO

INTRODUCTION: Vagus nerve stimulation (VNS) is an FDA-approved neuromodulatory treatment used in the clinic today for epilepsy, depression, and cluster headaches. Moreover, evidence in the literature has led to a growing list of possible clinical indications, with several small clinical trials applying VNS to treat conditions ranging from neurodegenerative diseases to arthritis, anxiety disorders, and obesity. Despite the growing list of therapeutic applications, the fundamental mechanisms by which VNS achieves its beneficial effects are poorly understood. In parallel, the glymphatic and meningeal lymphatic systems have recently been described as methods by which the brain maintains a healthy homeostasis and removes waste without a traditionally defined lymphatic system. In particular, the glymphatic system relates to the interchange of cerebrospinal fluid (CSF) and interstitial fluid (ISF) whose net effect is to wash through the brain parenchyma removing metabolic waste products and misfolded proteins. OBJECTIVE/HYPOTHESIS: As VNS has well-documented effects on many of the pathways recently linked to the clearance systems of the brain, we hypothesized that VNS could increase CSF penetrance in the brain. METHODS: We injected a low molecular weight lysine-fixable fluorescent tracer (TxRed-3kD) into the CSF system of mice with a cervical vagus nerve cuff implant and measured the amount of CSF penetrance following an application of a clinically-derived VNS paradigm (30 Hz, 10% duty cycle). RESULTS: We found that the clinical VNS group showed a significant increase in CSF tracer penetrance as compared to the naïve control and sham groups. CONCLUSION: (s): This study demonstrates that VNS therapeutic strategies already being applied in the clinic today may induce intended effects and/or unwanted side effects by altering CSF/ISF exchange in the brain. This may have broad ranging implications in the treatment of various CNS pathologies.


Assuntos
Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Estimulação do Nervo Vago/métodos , Animais , Encéfalo/fisiologia , Líquido Cefalorraquidiano/fisiologia , Corantes Fluorescentes/farmacocinética , Masculino , Camundongos , Nervo Vago/fisiologia , Xantenos/líquido cefalorraquidiano
4.
J Surg Res ; 251: 311-320, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32200322

RESUMO

BACKGROUND: Outcome assessments that evaluate post-transection nerve repair do not often correlate with one another. The aims of this study were twofold: to compare four nerve repair techniques with each other and incorporate both negative and positive control groups and to identify possible correlations between outcome assessments. MATERIALS AND METHODS: Sciatic nerve transection and repair was performed in Lewis rats using one of the following techniques: interrupted epineural, running epineural, grouped fascicular, epineural with absorbable type I collagen wrap, and high tension for incorporation of a negative control. A sham surgery group was also included as a positive control group. Outcomes were compared using assessments of functional recovery (behavior and electrophysiology) and nerve regrowth (imaging and histomorphometry). Three-dimensional printed custom electrode stabilization and imaging devices were designed and fabricated to provide standardization in assessment between subjects. RESULTS: Nerve repair was performed in 48 male Lewis rats. In all animals, functional testing was performed at week 13. The sham group (n = 7) performed the best on both behavioral assays (P < 0.001) and electrophysiology assessments (P < 0.001). The negative control group (high tension) performed poorest on multiple assessments, and there were no significant differences observed for any of the four repair types. Positive correlations were observed between behavioral and histomorphometric tests. CONCLUSIONS: There was no difference in outcome between the four types of nerve repair. High-tension nerve repair represents an ideal negative control. Not all assessment methods correlate equally, and consistent use of complimentary outcome assessments could allow for improved comparison between studies.


Assuntos
Regeneração Nervosa , Procedimentos Neurocirúrgicos/métodos , Nervo Isquiático/lesões , Animais , Masculino , Procedimentos Neurocirúrgicos/reabilitação , Ratos Endogâmicos Lew , Teste de Desempenho do Rota-Rod , Nervo Isquiático/fisiologia
5.
Mil Med ; 185(Suppl 1): 462-469, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32074371

RESUMO

INTRODUCTION: While debate persists over how to best prevent or treat amputation neuromas, the more pressing question of how to best marry residual nerves to state-of-the-art robotic prostheses for naturalistic control of a replacement limb has come to the fore. One potential solution involves the transposition of terminal nerve ends into the medullary canal of long bones, creating the neural interface within the bone. Nerve transposition into bone is a long-practiced, clinically relevant treatment for painful neuromas. Despite neuropathic pain relief, the physiological capacity of transposed nerves to conduct motor and sensory signals required for prosthesis control remains unknown. This pilot study addresses the hypotheses that (1) bone provides stability to transposed nerves and (2) nerves transposed into bone remain physiologically active, as they relate to the creation of an osseointegrated neural interface. METHODS: New Zealand white rabbits received transfemoral amputation, with the sciatic nerve transposed into the femur. RESULTS: Morphological examination demonstrates that nerves remain stable within the medullary canal, while compound nerve action potentials evoked by electrical stimulation of the residual nerve within the bone could be achieved at 12 weeks (p < 0.0005). CONCLUSION: Transposed nerves retain a degree of physiological function suitable for creating an osseointegrated neural interface.


Assuntos
Prótese Ancorada no Osso/veterinária , Rede Nervosa/fisiopatologia , Condução Nervosa/fisiologia , Próteses e Implantes/veterinária , Potenciais de Ação , Animais , Projetos Piloto , Coelhos/lesões , Robótica/métodos , Robótica/tendências
6.
J Neurosci Methods ; 336: 108602, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31981569

RESUMO

BACKGROUND: A number of peripheral nerve interfaces for nerve stimulation and recording exist for the purpose of controlling neural prostheses, each with a set of advantages and disadvantages. The ultimate goal of neural prostheses is a seamless bi-directional communication between the peripheral nervous system and the prosthesis. Here, we developed an interfacing electrode array, the "cuff and sieve electrodes" (CASE), integrating microfabricated cuff and sieve electrodes to a single unit, to decrease the weaknesses faced by these electrode designs in isolation. This paper presents the design and fabrication of CASE with ex vivo and in vivo testing towards chronic application. METHODS: Electroplating on electrode sites was performed to improve electrical properties of CASE. The surface morphology and chemical compound were characterized using scanning electron microscopy and energy-dispersive spectroscopy, respectively. Electrochemical impedance spectroscopy and cyclic voltammetry were performed to evaluate the electrical properties of CASE and determine viability for in vivo applications. Terminal CASE implantations were performed in a rat sciatic transection model to test the ease of implantation and capacity to write sensory information into the biological system. RESULTS: The modified platinum film resulted in reducing impedance magnitude (9.18 kΩ and 2.27 kΩ) and increasing phase angle (over 70°). CASE stimulation of the sciatic nerve at different amplitudes elicited significantly different cortical responses (p < 0.005) as demonstrated by somatosensory evoked potentials, recorded via micro-electrocorticography. CONCLUSIONS: The ability to elicit cortical responses from sciatic nerve stimulation demonstrates the proof of concept for both the implantation and chronic monitoring of CASE interfaces for innovative prosthetic control.


Assuntos
Membros Artificiais , Próteses Neurais , Animais , Impedância Elétrica , Estimulação Elétrica , Eletrodos , Eletrodos Implantados , Nervos Periféricos , Ratos
7.
J Neurosci Methods ; 331: 108504, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711884

RESUMO

BACKGROUND: Chronic stability and high degrees of selectivity are both essential but somewhat juxtaposed components for creating an implantable bi-directional PNI capable of controlling of a prosthetic limb. While the more invasive implantable electrode arrays provide greater specificity, they are less stable over time due to compliance mismatch with the dynamic soft tissue environment in which the interface is created. NEW METHOD: This paper takes the surgical approach of transposing nerves into bone to create neural interface within the medullary canal of long bones, an osseointegrated neural interface, to provide greater stability for implantable electrodes. In this context, we describe the surgical model for transfemoral amputation with transposition of the sciatic nerve into the medullary canal in rabbits. We investigate the capacity to create a neural interface within the medullary canal histolomorphologically. In a separate proof of concept experiment, we quantify the chronic physiological capacity of transposed nerves to conduct compound nerve action potentials evoked via an Osseointegrated Neural Interface. COMPARISON WITH EXISTING METHOD(S): The rabbit serves as an important animal model for both amputation neuroma and osseointegration research, but is underutilized for the exploration neural interfacing in an amputation setting. RESULTS: Our findings demonstrate that transposed nerves remain stable over 12 weeks. Creating a neural interface within the medullary canal is possible and does not impede nerve regeneration or physiological capacity. CONCLUSIONS: This article represents the first evidence that an Osseointegrated Neural Interface can be surgically created, capable of chronic stimulation/recording from amputated nerves required for future prosthetic control.


Assuntos
Amputados , Membros Artificiais , Animais , Eletrodos Implantados , Humanos , Regeneração Nervosa , Osseointegração , Desenho de Prótese , Coelhos
8.
Front Neurosci ; 13: 1017, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632232

RESUMO

The studies described in this paper for the first time characterize the acute and chronic performance of optically transparent thin-film micro-electrocorticography (µECoG) grids implanted on a thinned skull as both an electrophysiological complement to existing thinned skull preparation for optical recordings/manipulations, and a less invasive alternative to epidural or subdurally placed µECoG arrays. In a longitudinal chronic study, µECoG grids placed on top of a thinned skull maintain impedances comparable to epidurally placed µECoG grids that are stable for periods of at least 1 month. Optogenetic activation of cortex is also reliably demonstrated through the optically transparent µECoG grids acutely placed on the thinned skull. Finally, spatially distinct electrophysiological recordings were evident on µECoG electrodes placed on a thinned skull separated by 500-750 µm, as assessed by stimulation evoked responses using optogenetic activation of cortex as well as invasive and epidermal stimulation of the sciatic and median nerve at chronic time points. Neural signals were collected through a thinned skull in mice and rats, demonstrating potential utility in neuroscience research applications such as in vivo imaging and optogenetics.

9.
Biosens Bioelectron ; 142: 111493, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319324

RESUMO

The trigeminal nerve (cranial nerve V), along with other cranial nerves, has in recent years become a popular target for bioelectric medicine due to its direct access to neuromodulatory centers. Trigeminal nerve stimulation is currently being evaluated as an adjunctive treatment for various neurodegenerative and neuropsychiatric diseases despite the mechanism of action being in question. In this work, we describe the development and validation of a novel neural interface for the infraorbital branch of the trigeminal nerve utilizing a thin film (TF) nerve cuff containing multiple electrode sites allowing for more selective stimulation of the nerve. We characterized the properties of the device using electrochemical impedance spectroscopy, cyclic voltammetry, voltage excursions, and in vivo testing. Electrochemical measurements demonstrate that the platinum-based electrodes possess a capacitive charge carrying mechanism suitable for stimulation of biological tissue with a safe charge injection limit of 73.13 µC/cm2. In vivo stimulation experiments show that the TF cuff can reliably stimulate nerve targets eliciting cortical responses similar to a silicone cuff electrode. Furthermore, selecting different pairs of stimulation electrodes on the TF cuff modulated the magnitude and/or spatial pattern of cortical responses suggesting that the device may be able to selectively stimulate different parts of the nerve. These results suggest that the TF cuff is a viable neural interface for stimulation of the infraorbital branch of the trigeminal nerve that enables future research examining the therapeutic mechanisms of trigeminal nerve stimulation.


Assuntos
Terapia por Estimulação Elétrica/instrumentação , Estimulação Elétrica/instrumentação , Nervo Trigêmeo/fisiologia , Animais , Eletrodos Implantados , Desenho de Equipamento , Potenciais Somatossensoriais Evocados , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/terapia
10.
J Neurosci Methods ; 324: 108321, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229585

RESUMO

BACKGROUND: Bioelectric medicine seeks to modulate neural activity via targeted electrical stimulation to treat disease. Recent clinical evidence supports trigeminal nerve stimulation as a bioelectric treatment for several neurological disorders; however, the mechanisms of trigeminal nerve stimulation and potential side effects remain largely unknown. The goal of this study is to optimize the methodology and reproducibility of neural interface implantation for mechanistic studies in rodents. NEW METHOD(S): This article describes a single incision surgical approach to the infraorbital nerve of rats and mice and the supraorbital nerve in rats for trigeminal nerve stimulation studies. This article also presents the use of cortical evoked potentials and electromyography as methods for demonstrating effective engagement between the implanted electrode and target nerve. COMPARISON WITH EXISTING METHOD(S): A number of surgical approaches to the infraorbital nerve in rats exist, many of which are technically difficult. A simple, standardized approach to infraorbital nerve in rats and mice, as well as the supraorbital nerve of rats is integral to reproducibility of future trigeminal nerve stimulation studies. CONCLUSION: The infraorbital nerve of rats and mice can be easily accessed from a single dorsal incision on the bridge of the nose that avoids major anatomical structures such as the facial nerve. The supraorbital nerve is also accessible in rats from a single dorsal incision, but not mice due to size. Successful interfacing and engagement of the infra- and supraorbital nerves using the described methodology is demonstrated by recording of evoked cortical potentials and electromyography.


Assuntos
Estimulação Elétrica/métodos , Procedimentos Neurocirúrgicos/métodos , Nervo Trigêmeo , Animais , Eletrodos Implantados , Camundongos , Modelos Animais , Ratos
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4756-4759, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441412

RESUMO

In recent years, the trigeminal nerve (CN V) has become a popular target for neuromodulation therapies to treat of a variety of diseases due to its access to neuromodulatory centers. Despite promising preclinical and clinical data, the mechanism of action of trigeminal nerve stimulation (TNS) remains in question. In this work, we describe the development and evaluation of a neural interface targeting the mouse trigeminal nerve with the goal of enabling future mechanistic research on TNS. We performed experiments designed to evaluate the ability of a peripheral nerve interface (i.e. cuff electrode) to stimulate the infraorbital branch of the trigeminal nerve. We found that both artificial and naturalistic stimulation of the trigeminal nerve elicited robust cortical responses in the somatosensory cortex that scaled with increases in stimulus amplitude. These results suggest that an infraorbital nerve interface is a suitable candidate for examining the neural mechanisms of TNS in the mouse.


Assuntos
Córtex Somatossensorial , Nervo Trigêmeo , Animais , Estimulação Elétrica , Camundongos , Nervos Periféricos , Córtex Pré-Frontal
12.
Plast Reconstr Surg Glob Open ; 6(5): e1788, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29922565

RESUMO

Symptomatic neuroma after major extremity amputation is a challenging clinical problem for which there are many described treatment options. Neuroma excision and implantation into the medullary canal of long bones offers durability and insulation, and minimizes chronic pain. Another challenge in amputees is impaired function and an ongoing need for accessible and functional prostheses that are "bidirectional," in that they provide both fine motor control and sensory feedback. Drawing on clinical experience with neuroma implantation into the medullary canal of long bones, the authors propose a novel neural interface whereby a terminal nerve end is redirected into the medullary canal of a nearby long bone and interfaced with an electrode array. The osseointegrated neural interface aims to exploit electrical signals from peripheral nerves to control advanced prosthetic devices for amputees. The purpose of this article is to present 2 clinical cases of nerve translocation into bone that serve as the clinical foundation of the osseointegrated neural interface as an innovative interface for prosthetic control.

13.
ACS Nano ; 12(1): 148-157, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29253337

RESUMO

Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 µC/cm2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.


Assuntos
Encéfalo/fisiologia , Estimulação Elétrica/instrumentação , Eletrodos Implantados , Grafite/química , Neurônios/fisiologia , Imagem Óptica/instrumentação , Animais , Desenho de Equipamento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Modelos Moleculares
14.
Nat Protoc ; 11(11): 2201-2222, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27735935

RESUMO

Transparent graphene-based neural electrode arrays provide unique opportunities for simultaneous investigation of electrophysiology, various neural imaging modalities, and optogenetics. Graphene electrodes have previously demonstrated greater broad-wavelength transmittance (∼90%) than other transparent materials such as indium tin oxide (∼80%) and ultrathin metals (∼60%). This protocol describes how to fabricate and implant a graphene-based microelectrocorticography (µECoG) electrode array and subsequently use this alongside electrophysiology, fluorescence microscopy, optical coherence tomography (OCT), and optogenetics. Further applications, such as transparent penetrating electrode arrays, multi-electrode electroretinography, and electromyography, are also viable with this technology. The procedures described herein, from the material characterization methods to the optogenetic experiments, can be completed within 3-4 weeks by an experienced graduate student. These protocols should help to expand the boundaries of neurophysiological experimentation, enabling analytical methods that were previously unachievable using opaque metal-based electrode arrays.


Assuntos
Eletrodos Implantados , Eletrofisiologia/instrumentação , Grafite , Imagem Molecular/instrumentação , Optogenética/instrumentação , Animais , Eletrodos , Desenho de Equipamento , Camundongos , Ratos , Compostos de Estanho/química
15.
Nat Commun ; 5: 5258, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25327513

RESUMO

Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications.


Assuntos
Carbono/química , Grafite/química , Neuroimagem/instrumentação , Optogenética/instrumentação , Animais , Artefatos , Materiais Biocompatíveis/química , Eletrodos , Desenho de Equipamento , Feminino , Imageamento Tridimensional , Masculino , Camundongos , Microscopia de Fluorescência , Óptica e Fotônica , Ratos , Ratos Sprague-Dawley , Silício/química , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA