Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 75(12): 2079-2087, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35521791

RESUMO

BACKGROUND: While diagnostic, therapeutic, and vaccine development in the coronavirus disease 2019 (COVID-19) pandemic has proceeded at unprecedented speed, critical gaps in our understanding of the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain unaddressed by current diagnostic strategies. METHODS: A statistical classifier for identifying prior SARS-CoV-2 infection was trained using >4000 SARS-CoV-2-associated T-cell receptor (TCR) ß sequences identified by comparing 784 cases and 2447 controls from 5 independent cohorts. The T-Detect COVID (Adaptive Biotechnologies) assay applies this classifier to TCR repertoires sequenced from blood samples to yield a binary assessment of past infection. Assay performance was assessed in 2 retrospective (n = 346; n = 69) and 1 prospective cohort (n = 87) to determine positive percent agreement (PPA) and negative percent agreement (NPA). PPA was compared with 2 commercial serology assays, and pathogen cross-reactivity was evaluated. RESULTS: T-Detect COVID demonstrated high PPA in individuals with prior reverse transcription-polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection (97.1% 15+ days from diagnosis; 94.5% 15+ days from symptom onset), high NPA (∼100%) in presumed or confirmed SARS-CoV-2 negative cases, equivalent or higher PPA than 2 commercial serology tests, and no evidence of pathogen cross-reactivity. CONCLUSIONS: T-Detect COVID is a novel T-cell immunosequencing assay demonstrating high clinical performance for identification of recent or prior SARS-CoV-2 infection from blood samples, with implications for clinical management, risk stratification, surveillance, and understanding of protective immunity and long-term sequelae.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Estudos Retrospectivos , Estudos Prospectivos , Técnicas de Laboratório Clínico , Sensibilidade e Especificidade , Receptores de Antígenos de Linfócitos T
2.
Nature ; 530(7591): 477-80, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911784

RESUMO

The variation in molar tooth size in humans and our closest relatives (hominins) has strongly influenced our view of human evolution. The reduction in overall size and disproportionate decrease in third molar size have been noted for over a century, and have been attributed to reduced selection for large dentitions owing to changes in diet or the acquisition of cooking. The systematic pattern of size variation along the tooth row has been described as a 'morphogenetic gradient' in mammal, and more specifically hominin, teeth since Butler and Dahlberg. However, the underlying controls of tooth size have not been well understood, with hypotheses ranging from morphogenetic fields to the clone theory. In this study we address the following question: are there rules that govern how hominin tooth size evolves? Here we propose that the inhibitory cascade, an activator-inhibitor mechanism that affects relative tooth size in mammals, produces the default pattern of tooth sizes for all lower primary postcanine teeth (deciduous premolars and permanent molars) in hominins. This configuration is also equivalent to a morphogenetic gradient, finally pointing to a mechanism that can generate this gradient. The pattern of tooth size remains constant with absolute size in australopiths (including Ardipithecus, Australopithecus and Paranthropus). However, in species of Homo, including modern humans, there is a tight link between tooth proportions and absolute size such that a single developmental parameter can explain both the relative and absolute sizes of primary postcanine teeth. On the basis of the relationship of inhibitory cascade patterning with size, we can use the size at one tooth position to predict the sizes of the remaining four primary postcanine teeth in the row for hominins. Our study provides a development-based expectation to examine the evolution of the unique proportions of human teeth.


Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Dente/anatomia & histologia , Animais , Feminino , Fósseis , Hominidae/classificação , Humanos , Masculino , Dente Molar/anatomia & histologia , Tamanho do Órgão , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA