Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Imaging Biol ; 23(6): 930-940, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34101105

RESUMO

PURPOSE: Standard therapy for HER2+ breast cancers includes HER2 inhibition. While HER2 inhibitors have significantly improved therapeutic outcomes, many patients remain resistant to therapy. An important intrinsic resistance mechanism to HER2 inhibition in some breast cancers is dynamic upregulation of HER3. Increase in HER3 expression that occurs in response to HER2 inhibition allows for continued growth signaling through HER2/HER3 heterodimers, promoting tumor escape. We hypothesized that a non-invasive method to image changes in HER3 expression would be valuable to identify those breast cancers that dynamically upregulate HER3 in response to HER2 inhibition. We further hypothesized that this imaging method could identify those tumors that would benefit by additional HER3 knockdown. PROCEDURES: In a panel of HER2+ breast cancer cell lines treated with the HER2 inhibitor lapatinib, we evaluate changes in HER3 expression and viability. Mouse HER2+ breast cancer models treated with lapatinib were imaged with a peptide-based HER3-specific PET imaging agent [68Ga]HER3P1 to assess for dynamic changes in tumoral HER3 expression and uptake confirmed by biodistribution. Subsequently, HER2+ cell lines were treated with the HER2 inhibitor lapatinib as well HER3-specific siRNA to assess for changes in viability and correlate with HER3 expression upregulation. For all statistical comparisons, P<0.05 was considered statistically significant. RESULTS: Lapatinib treatment of a panel of HER2+ breast cancer cell lines increased HER3 expression in the lapatinib-resistant cell line MDA-MB 453 but not the lapatinib-resistant cell-line HCC-1569. Evaluation of [68Ga]HER3P1 uptake in mice implanted with the HER2+ breast cancer cell lines MDA-MB453 or HCC-1569 prior to and after treatment with lapatinib demonstrated a significant increase in MDA-MB453 tumors only, consistent with in vitro findings. The additional knockdown of HER3 increased therapeutic efficacy of lapatinib only in MDA-MB453 cells, but not in HCC-1569 cells. CONCLUSION: HER3 PET imaging can be used to visualize dynamic changes in HER3 expression that occur in HER2+ breast cancers with HER2 inhibitor treatment and identify those likely to benefit by the addition of combination HER3 and HER2 inhibition.


Assuntos
Antineoplásicos , Neoplasias da Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Tomografia por Emissão de Pósitrons , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptor ErbB-2/metabolismo , Receptor ErbB-3 , Distribuição Tecidual
2.
J Immunother Cancer ; 8(1)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461343

RESUMO

BACKGROUND: Cancer immunotherapy research is expanding to include a more robust understanding of the mechanisms of treatment response and resistance. Identification of drivers of pro-tumor and anti-tumor immunity during treatment offers new strategies for effective alternative or combination immunotherapies. Currently, tissue or blood samples are collected and analyzed, then dichotomized based on clinical end points that may occur months or years after tissue is collected. While overall survival is ultimately the desired clinical outcome, this dichotomization fails to incorporate the nuances that may occur during an anti-tumor response. By failing to directly measure immune activation at the time of sampling, tumors may be misclassified and potentially obscure important biological information. Non-invasive techniques, such as positron emission tomography (PET), allow for global and quantitative measurements of cancer specific processes and are widely used clinically to help manage disease. METHODS: We have previously developed a novel PET agent that can non-invasively quantify granzyme B release in tumors and have demonstrated its ability to predict response to checkpoint inhibitor therapy in multiple murine models of cancer. Here, we used the quantitative measurement of granzyme B release as a direct and time-matched marker of immune cell activation in order to determine immune cell types and cytokines that correlate with effective checkpoint inhibitor therapy in both tumors and tumor-draining lymph nodes. RESULTS: Through PET imaging, we were able to successfully distinguish distinct microenvironments, based on tumor type, which influenced immune cell subpopulations and cytokine release. Although each tumor was marked by functionally distinct pathways of immune cell activation and inflammation, they also shared commonalities that ultimately resulted in granzyme B release and tumor killing. CONCLUSIONS: These results suggest that discrete tumor immune microenvironments can be identified in both responsive and non-responsive tumors and offers strategic targets for intervention to overcome checkpoint inhibitor resistance.


Assuntos
Granzimas/metabolismo , Imunoterapia/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Humanos , Camundongos , Microambiente Tumoral
3.
Clin Cancer Res ; 25(4): 1196-1205, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30327313

RESUMO

PURPOSE: The lack of a timely and reliable measure of response to cancer immunotherapy has confounded understanding of mechanisms of resistance and subsequent therapeutic advancement. We hypothesized that PET imaging of granzyme B using a targeted peptide, GZP, could be utilized for early response assessment across many checkpoint inhibitor combinations, and that GZP uptake could be compared between therapeutic regimens and dosing schedules as an early biomarker of relative efficacy. EXPERIMENTAL DESIGN: Two models, MC38 and CT26, were treated with a series of checkpoint inhibitors. GZP PET imaging was performed to assess tumoral GZP uptake, and tumor volume changes were subsequently monitored to determine response. The average GZP PET uptake and response of each treatment group were correlated to evaluate the utility of GZP PET for comparing therapeutic efficacy. RESULTS: In both tumor models, GZP PET imaging was highly accurate for predicting response, with 93% sensitivity and 94% negative predictive value. Mean tumoral GZP signal intensity of treatment groups linearly correlated with percent response across all therapies and schedules. Moreover, GZP PET correctly predicted that sequential dose scheduling of PD-1 and CTLA-4 targeted therapies demonstrates comparative efficacy to concurrent administration. CONCLUSIONS: Granzyme B quantification is a highly sensitive and specific early measure of therapeutic efficacy for checkpoint inhibitor regimens. This work provides evidence that GZP PET imaging may be useful for rapid assessment of therapeutic efficacy in the context of clinical trials for both novel drugs as well as dosing regimens.


Assuntos
Neoplasias do Colo/diagnóstico por imagem , Genes cdc/efeitos dos fármacos , Granzimas/farmacologia , Imunoterapia , Animais , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Granzimas/genética , Xenoenxertos , Humanos , Camundongos , Tomografia por Emissão de Pósitrons , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia
4.
J Nucl Med ; 59(10): 1538-1543, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29853654

RESUMO

Tremendous efforts are currently dedicated to the development of novel therapies targeting the androgen receptor (AR), the major driver of prostate cancer disease and its progression to castration resistance. The ability to noninvasively interrogate AR expression over time in murine models of prostate cancer would permit longitudinal preclinical analysis of novel compounds that could not otherwise be accomplished ex vivo. Although PET imaging with 16ß-18F-fluoro-5α-dihydrotestosterone (18F-FDHT) has successfully quantified AR levels clinically, no rodent model of 18F-FDHT imaging has been reported so far. One difference between humans and rodents is the absence in the latter of the sex hormone-binding globulin (SHBG), a glycoprotein that binds to testosterone in the bloodstream, Here, we explore the role of SHBG in developing a working model of rodent AR imaging. Methods: Three human prostate cancer cell lines and xenografts (LNCaP, 22Rv1, and PC3) were used to examine the uptake of free 18F-FDHT and SHBG-bound 18F-FDHT. Both ligands were examined for stability and competitive binding to AR over time in vitro before in vivo studies. PET/CT imaging was used to dynamically measure the uptake of both tracers over 4 h, whereas specificity was determined by competitive binding with the AR antagonist enzalutamide. Results: AR levels correlated with the uptake of both 18F-FDHT and SHBG-18F-FDHT in prostate cancer cell lines. Interestingly, whereas both free and SHBG-bound 18F-FDHT had a similar cellular accumulation at 1 and 2.5 h, SHBG-18F-FDHT accumulated at significantly higher levels after 4 h-evidence that receptor-mediated uptake of SHBG accounted for later time-point differences. This observation was also seen in 22Rv1 tumor-bearing mice, in which SHBG-18F-FDHT exhibited a significantly increased uptake (average tumor-to-background ratio [TBR], 1.62 ± 0.62) in comparison to unbound 18F-FDHT (TBR, 0.81 ± 0.08) at 4 h. Furthermore, the specificity of the SHBG-18F-FDHT accumulation at 4 h was demonstrated by a reduced tumor uptake after AR blockade with enzalutamide (TBR, 1.07 ± 0.13). Conclusion: Prebinding of 18F-FDHT to SHBG allows accurate and quantitative PET imaging of AR levels in murine models of prostate cancer. This procedure may permit the use of PET imaging to study the longitudinal effects of AR-targeting therapies, accelerating novel-drug development.


Assuntos
Transformação Celular Neoplásica , Di-Hidrotestosterona/análogos & derivados , Radioisótopos de Flúor , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Globulina de Ligação a Hormônio Sexual/metabolismo , Animais , Transporte Biológico , Linhagem Celular Tumoral , Di-Hidrotestosterona/metabolismo , Humanos , Masculino , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA