Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Biomed Inform ; 155: 104659, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777085

RESUMO

OBJECTIVE: This study aims to promote interoperability in precision medicine and translational research by aligning the Observational Medical Outcomes Partnership (OMOP) and Phenopackets data models. Phenopackets is an expert knowledge-driven schema designed to facilitate the storage and exchange of multimodal patient data, and support downstream analysis. The first goal of this paper is to explore model alignment by characterizing the common data models using a newly developed data transformation process and evaluation method. Second, using OMOP normalized clinical data, we evaluate the mapping of real-world patient data to Phenopackets. We evaluate the suitability of Phenopackets as a patient data representation for real-world clinical cases. METHODS: We identified mappings between OMOP and Phenopackets and applied them to a real patient dataset to assess the transformation's success. We analyzed gaps between the models and identified key considerations for transforming data between them. Further, to improve ambiguous alignment, we incorporated Unified Medical Language System (UMLS) semantic type-based filtering to direct individual concepts to their most appropriate domain and conducted a domain-expert evaluation of the mapping's clinical utility. RESULTS: The OMOP to Phenopacket transformation pipeline was executed for 1,000 Alzheimer's disease patients and successfully mapped all required entities. However, due to missing values in OMOP for required Phenopacket attributes, 10.2 % of records were lost. The use of UMLS-semantic type filtering for ambiguous alignment of individual concepts resulted in 96 % agreement with clinical thinking, increased from 68 % when mapping exclusively by domain correspondence. CONCLUSION: This study presents a pipeline to transform data from OMOP to Phenopackets. We identified considerations for the transformation to ensure data quality, handling restrictions for successful Phenopacket validation and discrepant data formats. We identified unmappable Phenopacket attributes that focus on specialty use cases, such as genomics or oncology, which OMOP does not currently support. We introduce UMLS semantic type filtering to resolve ambiguous alignment to Phenopacket entities to be most appropriate for real-world interpretation. We provide a systematic approach to align OMOP and Phenopackets schemas. Our work facilitates future use of Phenopackets in clinical applications by addressing key barriers to interoperability when deriving a Phenopacket from real-world patient data.

2.
JAMIA Open ; 7(1): ooae021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38455840

RESUMO

Objective: To automate scientific claim verification using PubMed abstracts. Materials and Methods: We developed CliVER, an end-to-end scientific Claim VERification system that leverages retrieval-augmented techniques to automatically retrieve relevant clinical trial abstracts, extract pertinent sentences, and use the PICO framework to support or refute a scientific claim. We also created an ensemble of three state-of-the-art deep learning models to classify rationale of support, refute, and neutral. We then constructed CoVERt, a new COVID VERification dataset comprising 15 PICO-encoded drug claims accompanied by 96 manually selected and labeled clinical trial abstracts that either support or refute each claim. We used CoVERt and SciFact (a public scientific claim verification dataset) to assess CliVER's performance in predicting labels. Finally, we compared CliVER to clinicians in the verification of 19 claims from 6 disease domains, using 189 648 PubMed abstracts extracted from January 2010 to October 2021. Results: In the evaluation of label prediction accuracy on CoVERt, CliVER achieved a notable F1 score of 0.92, highlighting the efficacy of the retrieval-augmented models. The ensemble model outperforms each individual state-of-the-art model by an absolute increase from 3% to 11% in the F1 score. Moreover, when compared with four clinicians, CliVER achieved a precision of 79.0% for abstract retrieval, 67.4% for sentence selection, and 63.2% for label prediction, respectively. Conclusion: CliVER demonstrates its early potential to automate scientific claim verification using retrieval-augmented strategies to harness the wealth of clinical trial abstracts in PubMed. Future studies are warranted to further test its clinical utility.

3.
Nat Commun ; 14(1): 8318, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097619

RESUMO

Chronic kidney disease (CKD) is determined by an interplay of monogenic, polygenic, and environmental risks. Autosomal dominant polycystic kidney disease (ADPKD) and COL4A-associated nephropathy (COL4A-AN) represent the most common forms of monogenic kidney diseases. These disorders have incomplete penetrance and variable expressivity, and we hypothesize that polygenic factors explain some of this variability. By combining SNP array, exome/genome sequence, and electronic health record data from the UK Biobank and All-of-Us cohorts, we demonstrate that the genome-wide polygenic score (GPS) significantly predicts CKD among ADPKD monogenic variant carriers. Compared to the middle tertile of the GPS for noncarriers, ADPKD variant carriers in the top tertile have a 54-fold increased risk of CKD, while ADPKD variant carriers in the bottom tertile have only a 3-fold increased risk of CKD. Similarly, the GPS significantly predicts CKD in COL4A-AN carriers. The carriers in the top tertile of the GPS have a 2.5-fold higher risk of CKD, while the risk for carriers in the bottom tertile is not different from the average population risk. These results suggest that accounting for polygenic risk improves risk stratification in monogenic kidney disease.


Assuntos
Rim Policístico Autossômico Dominante , Insuficiência Renal Crônica , Humanos , Penetrância , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/complicações , Herança Multifatorial/genética , Fatores de Risco
4.
NPJ Digit Med ; 6(1): 158, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620423

RESUMO

Recent advances in large language models (LLMs) have demonstrated remarkable successes in zero- and few-shot performance on various downstream tasks, paving the way for applications in high-stakes domains. In this study, we systematically examine the capabilities and limitations of LLMs, specifically GPT-3.5 and ChatGPT, in performing zero-shot medical evidence summarization across six clinical domains. We conduct both automatic and human evaluations, covering several dimensions of summary quality. Our study demonstrates that automatic metrics often do not strongly correlate with the quality of summaries. Furthermore, informed by our human evaluations, we define a terminology of error types for medical evidence summarization. Our findings reveal that LLMs could be susceptible to generating factually inconsistent summaries and making overly convincing or uncertain statements, leading to potential harm due to misinformation. Moreover, we find that models struggle to identify the salient information and are more error-prone when summarizing over longer textual contexts.

5.
Kidney Int Rep ; 8(8): 1638-1647, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37547535

RESUMO

Introduction: The diagnosis and management of proteinuric kidney diseases such as focal segmental glomerulosclerosis (FSGS) are challenging. Genetics holds the promise to improve clinical decision making for these diseases; however, it is often performed too late to enable timely clinical action and it is not implemented within routine outpatient nephrology visits. Methods: We sought to test the implementation and feasibility of clinical rapid genome sequencing (GS) in guiding decision making in patients with proteinuric kidney disease in real-time and embedded in the outpatient nephrology setting. Results: We enrolled 10 children or young adults with biopsy-proven FSGS (9 cases) or minimal change disease (1 case). The mean age at enrollment was 16.2 years (range 2-30). The workflow did not require referral to external genetics clinics but was conducted entirely during the nephrology standard-of-care appointments. The total turn-around-time from enrollment to return-of-results and clinical decision averaged 21.8 days (12.4 for GS), which is well within a time frame that allows clinically relevant treatment decisions. A monogenic or APOL1-related form of kidney disease was diagnosed in 5 of 10 patients. The genetic findings resulted in a rectified diagnosis in 6 patients. Both positive and negative GS findings determined a change in pharmacological treatment. In 3 patients, the results were instrumental for transplant evaluation, donor selection, and the immunosuppressive treatment. All patients and families received genetic counseling. Conclusion: Clinical GS is feasible and can be implemented in real-time in the outpatient care to help guiding clinical management. Additional studies are needed to confirm the cost-effectiveness and broader utility of clinical GS across the phenotypic and demographic spectrum of kidney diseases.

6.
JAMIA Open ; 6(2): ooad032, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37181728

RESUMO

With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs.

7.
medRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162998

RESUMO

Recent advances in large language models (LLMs) have demonstrated remarkable successes in zero- and few-shot performance on various downstream tasks, paving the way for applications in high-stakes domains. In this study, we systematically examine the capabilities and limitations of LLMs, specifically GPT-3.5 and ChatGPT, in performing zero-shot medical evidence summarization across six clinical domains. We conduct both automatic and human evaluations, covering several dimensions of summary quality. Our study has demonstrated that automatic metrics often do not strongly correlate with the quality of summaries. Furthermore, informed by our human evaluations, we define a terminology of error types for medical evidence summarization. Our findings reveal that LLMs could be susceptible to generating factually inconsistent summaries and making overly convincing or uncertain statements, leading to potential harm due to misinformation. Moreover, we find that models struggle to identify the salient information and are more error-prone when summarizing over longer textual contexts.

8.
medRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37214819

RESUMO

Background: Chronic kidney disease (CKD) is a genetically complex disease determined by an interplay of monogenic, polygenic, and environmental risks. Most forms of monogenic kidney diseases have incomplete penetrance and variable expressivity. It is presently unknown if some of the variability in penetrance can be attributed to polygenic factors. Methods: Using the UK Biobank (N=469,835 participants) and the All of Us (N=98,622 participants) datasets, we examined two most common forms of monogenic kidney disorders, autosomal dominant polycystic kidney disease (ADPKD) caused by deleterious variants in the PKD1 or PKD2 genes, and COL4A-associated nephropathy (COL4A-AN caused by deleterious variants in COL4A3, COL4A4, or COL4A5 genes). We used the eMERGE-III electronic CKD phenotype to define cases (estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m2 or kidney failure) and controls (eGFR >90 mL/min/1.73m2 in the absence of kidney disease diagnoses). The effects of the genome-wide polygenic score (GPS) for CKD were tested in monogenic variant carriers and non-carriers using logistic regression controlling for age, sex, diabetes, and genetic ancestry. Results: As expected, the carriers of known pathogenic and rare predicted loss-of-function variants in PKD1 or PKD2 had a high risk of CKD (ORmeta=17.1, 95% CI: 11.1-26.4, P=1.8E-37). The GPS was comparably predictive of CKD in both ADPKD variant carriers (ORmeta=2.28 per SD, 95%CI: 1.55-3.37, P=2.6E-05) and non-carriers (ORmeta=1.72 per SD, 95% CI=1.69-1.76, P< E-300) independent of age, sex, diabetes, and genetic ancestry. Compared to the middle tertile of the GPS distribution for non-carriers, ADPKD variant carriers in the top tertile had a 54-fold increased risk of CKD, while ADPKD variant carriers in the bottom tertile had only a 3-fold increased risk of CKD. Similarly, the GPS was predictive of CKD in both COL4-AN variant carriers (ORmeta=1.78, 95% CI=1.22-2.58, P=2.38E-03) and non-carriers (ORmeta=1.70, 95%CI: 1.68-1.73 P

9.
J Am Soc Nephrol ; 34(6): 1105-1119, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995132

RESUMO

SIGNIFICANCE STATEMENT: Congenital obstructive uropathy (COU) is a prevalent human developmental defect with highly heterogeneous clinical presentations and outcomes. Genetics may refine diagnosis, prognosis, and treatment, but the genomic architecture of COU is largely unknown. Comprehensive genomic screening study of 733 cases with three distinct COU subphenotypes revealed disease etiology in 10.0% of them. We detected no significant differences in the overall diagnostic yield among COU subphenotypes, with characteristic variable expressivity of several mutant genes. Our findings therefore may legitimize a genetic first diagnostic approach for COU, especially when burdening clinical and imaging characterization is not complete or available. BACKGROUND: Congenital obstructive uropathy (COU) is a common cause of developmental defects of the urinary tract, with heterogeneous clinical presentation and outcome. Genetic analysis has the potential to elucidate the underlying diagnosis and help risk stratification. METHODS: We performed a comprehensive genomic screen of 733 independent COU cases, which consisted of individuals with ureteropelvic junction obstruction ( n =321), ureterovesical junction obstruction/congenital megaureter ( n =178), and COU not otherwise specified (COU-NOS; n =234). RESULTS: We identified pathogenic single nucleotide variants (SNVs) in 53 (7.2%) cases and genomic disorders (GDs) in 23 (3.1%) cases. We detected no significant differences in the overall diagnostic yield between COU sub-phenotypes, and pathogenic SNVs in several genes were associated to any of the three categories. Hence, although COU may appear phenotypically heterogeneous, COU phenotypes are likely to share common molecular bases. On the other hand, mutations in TNXB were more often identified in COU-NOS cases, demonstrating the diagnostic challenge in discriminating COU from hydronephrosis secondary to vesicoureteral reflux, particularly when diagnostic imaging is incomplete. Pathogenic SNVs in only six genes were found in more than one individual, supporting high genetic heterogeneity. Finally, convergence between data on SNVs and GDs suggest MYH11 as a dosage-sensitive gene possibly correlating with severity of COU. CONCLUSIONS: We established a genomic diagnosis in 10.0% of COU individuals. The findings underscore the urgent need to identify novel genetic susceptibility factors to COU to better define the natural history of the remaining 90% of cases without a molecular diagnosis.


Assuntos
Hidronefrose , Obstrução Ureteral , Refluxo Vesicoureteral , Humanos , Variações do Número de Cópias de DNA , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Refluxo Vesicoureteral/diagnóstico , Refluxo Vesicoureteral/genética , Pelve Renal/patologia
11.
Am J Kidney Dis ; 81(3): 318-328.e1, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36191724

RESUMO

RATIONALE & OBJECTIVE: The effects of race, ethnicity, socioeconomic status (SES), and disease severity on acute care utilization in patients with glomerular disease are unknown. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: 1,456 adults and 768 children with biopsy-proven glomerular disease enrolled in the Cure Glomerulonephropathy (CureGN) cohort. EXPOSURE: Race and ethnicity as a participant-reported social factor. OUTCOME: Acute care utilization defined as hospitalizations or emergency department visits. ANALYTICAL APPROACH: Multivariable recurrent event proportional rate models were used to estimate associations between race and ethnicity and acute care utilization. RESULTS: Black or Hispanic participants had lower SES and more severe glomerular disease than White or Asian participants. Acute care utilization rates were 45.6, 29.5, 25.8, and 19.2 per 100 person-years in Black, Hispanic, White, and Asian adults, respectively, and 55.8, 42.5, 40.8, and 13.0, respectively, for children. Compared with the White race (reference group), Black race was significantly associated with acute care utilization in adults (rate ratio [RR], 1.76 [95% CI, 1.37-2.27]), although this finding was attenuated after multivariable adjustment (RR, 1.31 [95% CI, 1.03-1.68]). Black race was not significantly associated with acute care utilization in children; Asian race was significantly associated with lower acute care utilization in children (RR, 0.32 [95% CI 0.14-0.70]); no significant associations between Hispanic ethnicity and acute care utilization were identified. LIMITATIONS: We used proxies for SES and lacked direct information on income, household unemployment, or disability. CONCLUSIONS: Significant differences in acute care utilization rates were observed across racial and ethnic groups in persons with prevalent glomerular disease, although many of these difference were explained by differences in SES and disease severity. Measures to combat socioeconomic disadvantage in Black patients and to more effectively prevent and treat glomerular disease are needed to reduce disparities in acute care utilization, improve patient wellbeing, and reduce health care costs.


Assuntos
Etnicidade , Disparidades em Assistência à Saúde , Nefropatias , Aceitação pelo Paciente de Cuidados de Saúde , Adulto , Criança , Humanos , População Negra , Hispânico ou Latino , Estudos Prospectivos , Classe Social , Povo Asiático , População Branca , Aceitação pelo Paciente de Cuidados de Saúde/etnologia
12.
Am J Med Genet C Semin Med Genet ; 190(3): 289-301, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36161695

RESUMO

Studies have shown that as many as 1 in 10 adults with chronic kidney disease has a monogenic form of disease. However, genetic services in adult nephrology are limited. An adult Kidney Genetics Clinic was established within the nephrology division at a large urban academic medical center to increase access to genetic services and testing in adults with kidney disease. Between June 2019 and December 2021, a total of 363 patients were referred to the adult Kidney Genetics Clinic. Of those who completed genetic testing, a positive diagnostic finding was identified in 27.1%, a candidate diagnostic finding was identified in 6.7% of patients, and a nondiagnostic positive finding was identified in an additional 8.6% of patients, resulting in an overall yield of 42.4% for clinically relevant genetic findings in tested patients. A genetic diagnosis had implications for medical management, family member testing, and eligibility for clinical trials. With the utilization of telemedicine, genetic services reached a diverse geographic and patient population. Genetic education efforts were integral to the clinic's success, as they increased visibility and helped providers identify appropriate referrals. Ongoing access to genomic services will remain a fundamental component of patient care in adults with kidney disease.


Assuntos
Nefrologia , Insuficiência Renal Crônica , Adulto , Humanos , Serviços em Genética , Nefrologia/métodos , Testes Genéticos/métodos , Encaminhamento e Consulta , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/terapia
13.
Am J Hum Genet ; 109(9): 1591-1604, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998640

RESUMO

Diagnosis for rare genetic diseases often relies on phenotype-driven methods, which hinge on the accuracy and completeness of the rare disease phenotypes in the underlying annotation knowledgebase. Existing knowledgebases are often manually curated with additional annotations found in published case reports. Despite their potential, real-world data such as electronic health records (EHRs) have not been fully exploited to derive rare disease annotations. Here, we present open annotation for rare diseases (OARD), a real-world-data-derived resource with annotation for rare-disease-related phenotypes. This resource is derived from the EHRs of two academic health institutions containing more than 10 million individuals spanning wide age ranges and different disease subgroups. By leveraging ontology mapping and advanced natural-language-processing (NLP) methods, OARD automatically and efficiently extracts concepts for both rare diseases and their phenotypic traits from billing codes and lab tests as well as over 100 million clinical narratives. The rare disease prevalence derived by OARD is highly correlated with those annotated in the original rare disease knowledgebase. By performing association analysis, we identified more than 1 million novel disease-phenotype association pairs that were previously missed by human annotation, and >60% were confirmed true associations via manual review of a list of sampled pairs. Compared to the manual curated annotation, OARD is 100% data driven and its pipeline can be shared across different institutions. By supporting privacy-preserving sharing of aggregated summary statistics, such as term frequencies and disease-phenotype associations, it fills an important gap to facilitate data-driven research in the rare disease community.


Assuntos
Processamento de Linguagem Natural , Doenças Raras , Registros Eletrônicos de Saúde , Humanos , Fenótipo , Doenças Raras/genética
14.
Clin Transplant ; 36(1): e14516, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34661305

RESUMO

It is unknown how providing prospective living donors with information about APOL1, including the benefits and drawbacks of testing, influences their desire for testing. In this study, we surveyed 102 participants with self-reported African ancestry and positive family history of kidney disease, recruited from our nephrology waiting room. We assessed views on APOL1 testing before and after presentation of a set of potential benefits and drawbacks of testing and quantified the self-reported level of influence individual benefits and drawbacks had on participants' desire for testing in the proposed context of living donation. The majority of participants (92%) were aware of organ donation and more than half (56%) had considered living donation. And though we found no significant change in response following presentation of the potential benefits and the drawbacks of APOL1 testing by study end significance, across all participants, "becoming aware of the potential risk of kidney disease among your immediate family" was the benefit with the highest mean influence (3.3±1.4), while the drawback with the highest mean influence (2.9±1.5) was "some transplant centers may not allow you to donate to a loved one". This study provides insights into the priorities of prospective living donors and suggests concern for how the information affects family members may strongly influence desires for testing. It also highlights the need for greater community engagement to gain a deeper understanding of the priorities that influence decision making on APOL1 testing.


Assuntos
Apolipoproteína L1 , Transplante de Rim , Negro ou Afro-Americano , Apolipoproteína L1/genética , Atitude , Testes Genéticos , Humanos , Doadores Vivos , Estudos Prospectivos
16.
Glomerular Dis ; 1(3): 105-117, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34723246

RESUMO

INTRODUCTION: Disparities in health-related quality of life (HRQOL) have been inadequately studied in patients with glomerular disease. The aim of this study was to identify relationships between race/ethnicity, socioeconomic status, disease severity, and HRQOL in an ethnically and racially diverse cohort of patients with glomerular disease. METHODS: Cure Glomerulonephropathy (CureGN) is a multinational cohort study of patients with biopsy-proven glomerular disease. Associations between race/ethnicity and HRQOL were determined by the following: 1. Missed school or work due to kidney disease; 2. Responses to Patient Reported Outcomes Measurement Information System (PROMIS) questionnaires. We adjusted for demographics, socioeconomic status, and disease characteristics using multivariable logistic and linear regression. RESULTS: Black and Hispanic participants had worse socioeconomic status and more severe glomerular disease than White or Asian participants. Black adults missed work or school most frequently due to kidney disease (30% versus 16-23% in the other three groups, p=0.04), and had the worst self-reported global physical health (median score 44.1 versus 48.0-48.2, p<0.001) and fatigue (53.8 versus 48.5-51.1, p=0.002), compared to other racial/ethnic groups. However, these findings were not statistically significant with adjustment for socioeconomic status and disease severity, both of which were strongly associated with HRQOL in adults. Among children, disease severity but not race/ethnicity or socioeconomic status were associated with HRQOL. CONCLUSIONS: Among patients with glomerular disease enrolled in CureGN, the worse HRQOL reported by Black adults was attributable to lower socioeconomic status and more severe glomerular disease. No racial/ethnic differences in HRQOL were observed in children.

17.
J Biomed Inform ; 118: 103795, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33930535

RESUMO

Structured representation of clinical genetic results is necessary for advancing precision medicine. The Electronic Medical Records and Genomics (eMERGE) Network's Phase III program initially used a commercially developed XML message format for standardized and structured representation of genetic results for electronic health record (EHR) integration. In a desire to move towards a standard representation, the network created a new standardized format based upon Health Level Seven Fast Healthcare Interoperability Resources (HL7® FHIR®), to represent clinical genomics results. These new standards improve the utility of HL7® FHIR® as an international healthcare interoperability standard for management of genetic data from patients. This work advances the establishment of standards that are being designed for broad adoption in the current health information technology landscape.


Assuntos
Registros Eletrônicos de Saúde , Informática Médica , Genômica , Nível Sete de Saúde , Humanos , Medicina de Precisão
18.
JAMIA Open ; 4(1): ooab014, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33709066

RESUMO

How clinicians utilize medically actionable genomic information, displayed in the electronic health record (EHR), in medical decision-making remains unknown. Participating sites of the Electronic Medical Records and Genomics (eMERGE) Network have invested resources into EHR integration efforts to enable the display of genetic testing data across heterogeneous EHR systems. To assess clinicians' engagement with unsolicited EHR-integrated genetic test results of eMERGE participants within a large tertiary care academic medical center, we analyzed automatically generated EHR access log data. We found that clinicians viewed only 1% of all the eMERGE genetic test results integrated in the EHR. Using a cluster analysis, we also identified different user traits associated with varying degrees of engagement with the EHR-integrated genomic data. These data contribute important empirical knowledge about clinicians limited and brief engagements with unsolicited EHR-integrated genetic test results of eMERGE participants. Appreciation for user-specific roles provide additional context for why certain users were more or less engaged with the unsolicited results. This study highlights opportunities to use EHR log data as a performance metric to more precisely inform ongoing EHR-integration efforts and decisions about the allocation of informatics resources in genomic research.

19.
Kidney Int Rep ; 6(2): 243-245, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33617608
20.
Int J Obes (Lond) ; 45(1): 155-169, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32952152

RESUMO

BACKGROUND/OBJECTIVES: Melanocortin-4 receptor (MC4R) plays an essential role in food intake and energy homeostasis. More than 170 MC4R variants have been described over the past two decades, with conflicting reports regarding the prevalence and phenotypic effects of these variants in diverse cohorts. To determine the frequency of MC4R variants in large cohort of different ancestries, we evaluated the MC4R coding region for 20,537 eMERGE participants with sequencing data plus additional 77,454 independent individuals with genome-wide genotyping data at this locus. SUBJECTS/METHODS: The sequencing data were obtained from the eMERGE phase III study, in which multisample variant call format calls have been generated, curated, and annotated. In addition to penetrance estimation using body mass index (BMI) as a binary outcome, GWAS and PheWAS were performed using median BMI in linear regression analyses. All results were adjusted for principal components, age, sex, and sites of genotyping. RESULTS: Targeted sequencing data of MC4R revealed 125 coding variants in 1839 eMERGE participants including 30 unreported coding variants that were predicted to be functionally damaging. Highly penetrant unreported variants included (L325I, E308K, D298N, S270F, F261L, T248A, D111V, and Y80F) in which seven participants had obesity class III defined as BMI ≥ 40 kg/m2. In GWAS analysis, in addition to known risk haplotype upstream of MC4R (best variant rs6567160 (P = 5.36 × 10-25, Beta = 0.37), a novel rare haplotype was detected which was protective against obesity and encompassed the V103I variant with known gain-of-function properties (P = 6.23 × 10-08, Beta = -0.62). PheWAS analyses extended this protective effect of V103I to type 2 diabetes, diabetic nephropathy, and chronic renal failure independent of BMI. CONCLUSIONS: MC4R screening in a large eMERGE cohort confirmed many previous findings, extend the MC4R pleotropic effects, and discovered additional MC4R rare alleles that probably contribute to obesity.


Assuntos
Variação Genética/genética , Estudo de Associação Genômica Ampla , Obesidade , Receptor Tipo 4 de Melanocortina/genética , Adulto , Idoso , Índice de Massa Corporal , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA