Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38383758

RESUMO

AIMS: Antibiotic management of infections caused by Acinetobacter baumannii often fails due to antibiotic resistance (especially to carbapenems) and biofilm-forming strains. Thus, the objective here was to evaluate in vitro the antibacterial and antibiofilm activity of biogenic silver nanoparticle (Bio-AgNP) combined with meropenem, against multidrug-resistant isolates of A. baumannii. METHODS AND RESULTS: In this study, A. baumannii ATCC® 19606™ and four carbapenem-resistant A. baumannii (Ab) strains were used. The antibacterial activity of Bio-AgNP and meropenem was evaluated through broth microdilution. The effect of the Bio-AgNP association with meropenem was determined by the checkboard method. Also, the time-kill assay and the integrity of the bacterial cell membrane were evaluated. Furthermore, the antibiofilm activity of Bio-AgNP and meropenem alone and in combination was determined. Bio-AgNP has antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration ranging from 0.46 to 1.87 µg ml-1. The combination of Bio-AgNP and meropenem showed a synergistic and additive effect against Ab strains, and Bio-AgNP was able to reduce the MIC of meropenem from 4- to 8-fold. Considering the time-kill of the cell, meropenem and Bio-AgNP when used in combination reduced bacterial load to undetectable levels within 10 min to 24 h after treatment. Protein leakage was observed in all treatments evaluated. When combined, meropenem/Bio-AgNP presents biofilm inhibition for Ab2 isolate and ATCC® 19606™, with 21% and 19%, and disrupts the biofilm from 22% to 50%, respectively. The increase in nonviable cells in the biofilm can be observed after treatment with Bio-AgNP and meropenem in carbapenem-resistant A. baumannii strains. CONCLUSIONS: The combination of Bio-AgNP with meropenem can be a therapeutic option in the treatment of infections caused by carbapenem-resistant A. baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Nanopartículas Metálicas , Humanos , Meropeném/farmacologia , Prata/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Sinergismo Farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
2.
Braz J Microbiol ; 54(4): 2641-2650, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37676406

RESUMO

Multidrug-resistant (MDR) bacteria are one problem in health since the therapeutic alternative are reduced. For this, the application of nanotechnology through functionalized nanoparticles, like a biogenic silver nanoparticle (Bio-AgNP), obtained by biological synthesis, emerges as a possible alternative against the MDR bacteria. This study aimed to evaluate the antibacterial and antibiofilm activity of Bio-AgNP obtained for biological synthesis by Fusarium oxysporum strain 551 against methicillin-resistant Staphylococcus aureus (MRSA) and MDR coagulase-negative Staphylococcus (CoNS) isolates. Bio-AgNP has activity against S. aureus ATCC 25904, Staphylococcus epidermidis ATCC 35984, and MDR isolates, with minimal inhibitory concentration (MIC) ranging from 3.75 to 15 µg.mL-1 and minimal bactericidal concentration (MBC) from 7.5 to 30 µg.mL-1. In the membrane leakage assay, it was observed that all concentrations tested led to proteins release from the cellular content dose-dependently, where the highest concentrations led to higher protein in the supernatant. The 2×MIC of Bio-AgNP killed ATCC 35984 after 6h of treatment, and ATCC 25904 and S. aureus (SA3) strains after 24h of treatment. The 4×MIC was bactericidal in 6h of treatment for all strains in the study. The biofilm of MDR isolates was inhibited in 80.94 to 100% and eradicated in 60 to 94%. The confocal laser scanning microscopy (CLSM) analysis demonstrated similar results to the antibiofilm assays. The Bio-AgNP has antibacterial and antibiofilm activity and can be a promising therapeutic alternative against MDR bacteria.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Prata/farmacologia , Coagulase , Resistência a Meticilina , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
3.
Appl Microbiol Biotechnol ; 106(24): 8079-8091, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36383248

RESUMO

Bartonella henselae is a Gram-negative bacterium that causes cat scratch disease (CSD), as well as bacteremia, endocarditis, and other clinical presentations. CSD remains one of the most common infections caused by bacteria in the genus Bartonella, and it is transmitted to humans through a scratch or cat bite. Vaccination and more efficient diagnostic methods would represent a promising and sustainable alternative measure for CSD control in humans and animals. Here, we described the in silico analyses and design of three recombinant chimeric proteins (rC1, rC2, and rC3), for use in the control of CSD. The chimeras were constructed with epitopes identified from the sequences of the GroEL, 17 kDa, P26, BadA, Pap31, OMP 89, and OMP 43, previously described as the most important B. henselae antigens. The rC1, rC2, and rC3 were expressed and purified using a heterologous system based on Escherichia coli and reacted with antibodies present in the sera of humans naturally infected. The chimeric proteins were used to immunize mice using Freund adjuvant, and the humoral immune response was evaluated. Animals immunized with rC1 and rC3 showed a significant IgG antibodies response from the 28th day (P < 0.05), and the animals immunized with the rC2 from the 35th day (P < 0.05) remained until the 56th day of experimentation, with a titer of 1:3200 (P < 0.05), 1:1600 (P < 0.05) and 1:1600 (P < 0.05) from rC1, rC2, and rC3, respectively. Significant production of IgA and IgG1 isotype was detected in animals immunized with rC1 and rC2 proteins. Additionally, analysis using 13 serum samples from naturally infected patients showed that the proteins are recognized by antibodies present in sera, reinforcing the possibility of using these chimeras for CSD control. KEY POINTS: • The recombinant chimeras were expressed in Escherichia coli with 37 kDa (rC1), 35 kDa (rC2), and 38 kDa (rC3). • Animals immunized with rC1, rC2, and rC3 showed significant antibody response. • The chimeras were recognized by the sera of naturally infected patients.


Assuntos
Bartonella henselae , Doença da Arranhadura de Gato , Humanos , Animais , Camundongos , Doença da Arranhadura de Gato/diagnóstico , Doença da Arranhadura de Gato/prevenção & controle , Bartonella henselae/genética , Epitopos/genética , Proteínas Recombinantes de Fusão/genética , Escherichia coli/genética
4.
Vaccine ; 36(19): 2574-2580, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29625765

RESUMO

BACKGROUND: Recombinant subunit vaccines have been extensively evaluated as promising alternatives against leptospirosis. Here, we evaluated two proteins in formulations containing the adjuvant AddaVax™ as vaccine candidates for prevention and control of leptospirosis. METHODS: Recombinant proteins rErp Y-like and rLemA were characterized by ELISA to assess their ability to bind extracellular matrix (ECM) components and fibrinogen. Groups of eight hamsters were immunized intramuscularly with rErp Y-like or rLemA mixed with a squalene-based adjuvant (AddaVax), and then vaccine efficacy was determined in terms of protection against a lethal challenge. The humoral immune response was determined by ELISA, and the evidence of sub-lethal infection was evaluated by histopathology and kidney culture. RESULTS: rLemA protein binds laminin, fibrinogen, and collagen type IV, while rErp Y-like interacts with fibrinogen. Significant protection was achieved for rLemA and rErp Y-like vaccines, which showed 87.5% and 62.5% survivals, respectively. On day 28, the humoral immune response was significantly greater in the vaccine groups as compared to that in the control group, and the response was predominantly based on IgG2/3. The surviving animals showed negative results in culture isolation but presented with tissue lesions in the lungs and kidneys. CONCLUSION: Cumulatively, our findings suggest that LemA and Erp Y-like proteins act as adhesins and are able to protect against mortality, but not against tissue lesions. Moreover, AddaVax is a novel adjuvant with potential for improving the immunogenicity of leptospiral vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Bacterianas/farmacologia , Leptospira interrogans/genética , Leptospirose/prevenção & controle , Polissorbatos/farmacologia , Esqualeno/farmacologia , Animais , Proteínas de Bactérias/genética , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Cricetinae , Feminino , Leptospira interrogans/patogenicidade , Leptospirose/imunologia , Masculino , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Fatores de Transcrição/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/farmacologia
5.
Eur J Med Chem ; 118: 259-65, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27131068

RESUMO

Seven new 4-thiazolidinones bearing the morpholino moiety were easily synthesized by one-pot reactions of 4-(2-aminoethyl)morpholine (2-morpholinoethylamine), arenealdehydes and mercaptoacetic acid refluxing toluene for 19 h with moderate to good yields (45-97%). These novel compounds were fully identified and characterized by NMR spectroscopy and mass spectrometry. Thiazolidin-4-ones in vivo anti-inflammatory activities were determined using a croton oil-induced ear edema model of inflammation in BALB C mice. The best results were found for compounds 4c (49.20 mmol/kg), 4d (49.20 mmol/kg) and 4f (52.48 mmol/kg), which showed the ability to decrease the ear edema in mice by 50%, 48% and 54%, respectively, when compared to the standard drug indomethacin. In addition, the in vitro cytotoxicity activity of thiazolidin-4-ones against Vero cells was also performed and four compounds (4a, 4c, 4d and 4f) showed no toxic effect at 500 µg/mL. A docking simulation of compounds into the 1Q4G (COX-1) and 4PH9 (COX-2) enzymes binding site was conducted. This preliminary result will guide us in for further studies to improve the anti-inflammatory activity.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Simulação de Acoplamento Molecular , Tiazolidinas/síntese química , Tiazolidinas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/toxicidade , Chlorocebus aethiops , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Camundongos , Conformação Proteica , Tiazolidinas/metabolismo , Tiazolidinas/toxicidade , Células Vero
6.
Am J Trop Med Hyg ; 94(3): 519-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26755566

RESUMO

Leptospirosis is a global zoonosis caused by pathogenic Leptospira spp. In this study, we characterized two Leptospira kirschneri serogroup Pomona serovar Mozdok isolates, one obtained from a dog and the other from a patient with severe leptospirosis, 4 years later. Histopathological analysis showed that both isolates caused severe tissue damage when used to infect hamsters. While L. kirschneri serogroup Pomona serovar Mozdok is endemic in animals in Europe, there is only one report of human leptospirosis in the literature. Although strains belonging to L. kirschneri serogroup Pomona have been identified in cases of human leptospirosis in Europe, serovar Mozdok has not yet been implicated. The 4-year interval between isolations and the fact that this is the first report of serovar Mozdok as the causative agent of human leptospirosis in the southern hemisphere, demonstrates its epidemiological importance to public health. Moreover, the presence of serovar Mozdok in Brazil has the potential to affect vaccine and diagnostic test development.


Assuntos
Doenças do Cão/microbiologia , Leptospira/classificação , Leptospira/isolamento & purificação , Leptospirose/microbiologia , Animais , Brasil/epidemiologia , Cricetinae , Doenças do Cão/epidemiologia , Cães , Feminino , Humanos , Leptospira/genética , Leptospirose/epidemiologia , Leptospirose/veterinária , Mesocricetus , Pessoa de Meia-Idade , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA