Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Blood Adv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359409

RESUMO

Graft-versus-host disease (GvHD) occurs in about 10-33% of patients receiving "al-logeneic" or "autologous" CAR-T cells after preceding allogeneic hematopoietic stem cell transplantation (allo-HSCT) due to the substantial presence of alloreactive T cells. Extracorporeal photopheresis (ECP) shows promising clinical outcomes in the treatment of GvHD after allo-HSCT without hampering anti-tumor and anti-viral effects. This raises an interesting question: whether ECP might constitute a new way to treat patients with GvHD after CAR-T cell therapy without compromising CAR-T cells significantly. Third-generation CD19-specific CAR-T cells were generated and an in vitro ECP protocol was established. The impact of ECP on CAR-T cells was comprehensively investigated in two models: the non-dilution model reflects days following CAR-T cell infusion and the dilution model weeks after infusion. The ther-apeutic effect of ECP on GvHD was examined in an in vitro mixed lymphocyte reac-tion (MLR) assay. We found out that ECP treated CAR-T cells demonstrated reduced potency in inducing alloreaction compared to the group without ECP treatment in MLR assay. ECP could selectively induce apoptosis, thereby enriching the naive and central memory CAR-T cells with a reduced alloreactivity. The cytokine milieu of CAR-T cells could be switched from immune stimulation to immune tolerance in both models. Moreover, ECP could modulate the proliferative capacity of CAR-T cells without hampering their long-term functionality in the dilution model. In con-clusion, ECP constitutes a promising treatment strategy for GvHD after allo-HSCT and CAR-T cell transfusion, as ECP reduces the alloreactivity without hampering CAR-T cell functionality.

2.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338672

RESUMO

The search for target antigens for CAR-T cell therapy against multiple myeloma defined the B-cell maturation antigen (BCMA) as an interesting candidate. Several studies with BCMA-directed CAR-T cell therapy showed promising results. Second-generation point-of-care BCMA.CAR-T cells were manufactured to be of a GMP (good manufacturing practice) standard using the CliniMACS Prodigy® device. Cytokine release in BCMA.CAR-T cells after stimulation with BCMA positive versus negative myeloma cell lines, U266/HL60, was assessed via intracellular staining and flow cytometry. The short-term cytotoxic potency of CAR-T cells was evaluated by chromium-51 release, while the long-term potency used co-culture (3 days/round) at effector/target cell ratios of 1:1 and 1:4. To evaluate the activation and exhaustion of CAR-T cells, exhaustion markers were assessed via flow cytometry. Stability was tested through a comparison of these evaluations at different timepoints: d0 as well as d + 14, d + 90 and d + 365 of cryopreservation. As results, (1) Killing efficiency of U266 cells correlated with the dose of CAR-T cells in a classical 4 h chromium-release assay. There was no significant difference after cryopreservation on different timepoints. (2) In terms of endurance of BCMA.CAR-T cell function, BCMA.CAR-T cells kept their ability to kill all tumor cells over six rounds of co-culture. (3) BCMA.CAR-T cells released high amounts of cytokines upon stimulation with tumor cells. There was no significant difference in cytokine release after cryopreservation. According to the results, BCMA.CAR-T cells manufactured under GMP conditions exerted robust and specific killing of target tumor cells with a high release of cytokines. Even after 1 year of cryopreservation, cytotoxic functions were maintained at the same level. This gives clinicians sufficient time to adjust the timepoint of BCMA.CAR-T cell application to the patient's course of the underlying disease.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Antígeno de Maturação de Linfócitos B/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/patologia , Citocinas/metabolismo , Linfócitos T , Criopreservação
3.
J Immunother Cancer ; 12(1)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296597

RESUMO

BACKGROUND: Relapse and graft-versus-host disease (GVHD) are the main causes of death after allogeneic hematopoietic cell transplantation (HCT). Preclinical murine models and clinical data suggest that invariant natural killer T (iNKT) cells prevent acute and chronic GVHD. In addition, iNKT cells are crucial for efficient immune responses against malignancies and contribute to reduced relapse rates after transplantation. Chimeric antigen receptors (CAR) redirect effector cells to cell surface antigens and enhance killing of target cells. With this study, we aimed to combine enhanced cytotoxicity of CD19-CAR-iNKT cells against lymphoma cells with their tolerogenic properties. METHODS: iNKT cells were isolated from peripheral blood mononuclear cells and transduced with an anti-CD19-CAR retrovirus. After in vitro expansion, the functionality of CD19-CAR-iNKT cells was assessed by flow cytometry, image stream analysis and multiplex analysis in single-stimulation or repeated-stimulation assays. Moreover, the immunoregulatory properties of CD19-CAR-iNKT cells were analyzed in apoptosis assays and in mixed lymphocyte reactions. The effect of checkpoint inhibition through nivolumab was analyzed in these settings. RESULTS: In this study, we could show that the cytotoxicity of CD19-CAR-iNKT cells was mediated either through engagement of their CAR or their invariant T-cell receptor, which may circumvent loss of response through antigen escape. However, encounter of CD19-CAR-iNKT cells with their target induced a phenotype of exhaustion. Consequently, checkpoint inhibition increased cytokine release, cytotoxicity and survival of CD19-CAR-iNKT cells. Additionally, they showed robust suppression of alloreactive immune responses. CONCLUSION: In this work, we demonstrate that CAR-iNKT cells are a powerful cytotherapeutic option to prevent or treat relapse while potentially reducing the risk of GVHD after allogeneic HCT.


Assuntos
Doença Enxerto-Hospedeiro , Células T Matadoras Naturais , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Antígenos CD19 , Doença Enxerto-Hospedeiro/etiologia , Recidiva
4.
J Hematol Oncol ; 16(1): 79, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481608

RESUMO

BACKGROUND: Third-generation chimeric antigen receptor (CAR)-engineered T cells (CARTs) might improve clinical outcome of patients with B cell malignancies. This is the first report on a third-generation CART dose-escalating, phase-1/2 investigator-initiated trial treating adult patients with refractory and/or relapsed (r/r) acute lymphoblastic leukemia (ALL). METHODS: Thirteen patients were treated with escalating doses of CD19-directed CARTs between 1 × 106 and 50 × 106 CARTs/m2. Leukapheresis, manufacturing and administration of CARTs were performed in-house. RESULTS: For all patients, CART manufacturing was feasible. None of the patients developed any grade of Immune effector cell-associated neurotoxicity syndrome (ICANS) or a higher-grade (≥ grade III) catokine release syndrome (CRS). CART expansion and long-term CART persistence were evident in the peripheral blood (PB) of evaluable patients. At end of study on day 90 after CARTs, ten patients were evaluable for response: Eight patients (80%) achieved a complete remission (CR), including five patients (50%) with minimal residual disease (MRD)-negative CR. Response and outcome were associated with the administered CART dose. At 1-year follow-up, median overall survival was not reached and progression-free survival (PFS) was 38%. Median PFS was reached on day 120. Lack of CD39-expression on memory-like T cells was more frequent in CART products of responders when compared to CART products of non-responders. After CART administration, higher CD8 + and γδ-T cell frequencies, a physiological pattern of immune cells and lower monocyte counts in the PB were associated with response. CONCLUSION: In conclusion, third-generation CARTs were associated with promising clinical efficacy and remarkably low procedure-specific toxicity, thereby opening new therapeutic perspectives for patients with r/r ALL. Trial registration This trial was registered at www. CLINICALTRIALS: gov as NCT03676504.


Assuntos
Síndromes Neurotóxicas , Humanos , Adulto , Leucaférese , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19/uso terapêutico
5.
Int J Mol Med ; 52(1)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37264971

RESUMO

Fetal bovine serum (FBS) or human serum is widely used in the production of chimeric antigen receptor (CAR) T­cells. In order to overcome a lot­to­lot inconsistency, the use of chemically defined medium that is free of animal-components would be highly desirable. The present study compared three serum­free media [Prime­XV™ T Cell CDM, Fujifilm™ (FF), LymphoONE™ T­Cell Expansion Xeno­Free Medium, Takara Bio™ (TB) and TCM GMP­Prototype, CellGenix™ (CG)] to the standard CAR T­cell medium containing FBS (RCF). After 12 days of CD19.CAR T­cell culture, the expansion, viability, transduction efficiency and phenotype were assessed using flow cytometry. The functionality of CAR T­cells was evaluated using intracellular staining, a chromium release assay and a long­term co­culture assay. Expansion and viability did not differ between the CAR T­cells generated in serum­free media compared to the standard FBS­containing medium. The CG CAR T­cells had a statistically significant higher frequency of IFNγ+ and IFNγ+TNF­α+ CAR T­cells than the CAR T­cells cultured with FBS (22.5 vs. 7.6%, P=0.0194; 15.3 vs. 6.2%, P=0.0399, respectively) as detected by intracellular cytokine staining. The CAR T­cells generated with serum­free media exhibited a higher cytotoxicity than the CAR T­cells cultured with FBS in the evaluation by chromium release assay [CG vs. RCF (P=0.0182), FF vs. RCF (P=0.0482) and TB vs. RCF (P=0.0482)]. Phenotyping on day 12 of CAR T­cell production did not reveal a significant difference in the expression of the exhaustion markers, programmed cell death protein 1, lymphocyte­activation gene 3 and T­cell immunoglobulin and mucin­domain containing­3. The CAR T­cells cultured in FF had a higher percentage of central memory CAR T­cells (40.0 vs. 14.3%, P=0.0470) than the CAR T­cells cultured with FBS, whereas the CAR T­cells in FF (6.2 vs. 24.2%, P=0.0029) and CG (11.0% vs. 24.2%, P=0.0468) had a lower frequency of naïve CAR T­cells. On the whole, the present study demonstrates that in general, the functionality and expansion of CAR T cells are maintained in serum­free media. Given the advantages of freedom from bovine material and consistent quality, serum­free media hold promise for the future development of the field of GMP manufacturing of CAR T­cells.


Assuntos
Citocinas , Linfócitos T , Animais , Humanos , Meios de Cultura Livres de Soro/metabolismo , Linfócitos T/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Cromo
6.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768267

RESUMO

The transcription factor SOX11 is a tumor-associated antigen with low expression in normal cells, but overexpression in glioblastoma (GBM). So far, conventional surgery, chemotherapy, and radiotherapy have not substantially improved the dismal prognosis of relapsed/refractory GBM patients. Immunotherapy is considered a promising strategy against GBM, but there is a fervent need for better immunotargets in GBM. To this end, we performed an in silico prediction study on SOX11, which primarily yielded ten promising HLA-A*0201-restricted peptides derived from SOX11. We defined a novel peptide FMACSPVAL, which had the highest score according to in silico prediction (6.02 nM by NetMHC-4.0) and showed an exquisite binding affinity to the HLA-A*0201 molecule in the peptide-binding assays. In the IFN-γ ELISPOT assays, FMACSPVAL demonstrated a high efficiency for generating SOX11-specific CD8+ T cells. Nine out of thirty-two healthy donors showed a positive response to SOX11, as assessed by the ELISPOT assays. Therefore, this novel antigen peptide epitope seems to be promising as a target for T cell-based immunotherapy in GBM. The adoptive transfer of in vitro elicited SOX11-specific CD8+ T cells constitutes a potential approach for the treatment of GBM patients.


Assuntos
Glioblastoma , Glioma , Humanos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Glioma/metabolismo , Glioblastoma/metabolismo , Peptídeos/química , Imunoterapia , Linfócitos T Citotóxicos , Fatores de Transcrição SOXC/metabolismo
7.
BMJ Open ; 12(11): e066128, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36368749

RESUMO

INTRODUCTION: Donor-derived modified immune cells (MIC) induced long-term specific immunosuppression against the allogeneic donor in preclinical models of transplantation. In a phase I clinical trial (TOL-1 Study), MIC treatment resulted in a cellular phenotype that was directly and indirectly suppressive to the recipient's immune system allowing for reduction of conventional immunosuppressive therapy. Here, we describe a protocol for a randomised controlled, multicentre phase-IIb clinical trial of individualised immunosuppression with intravenously administered donor MIC compared with standard-of-care (SoC) in living donor kidney transplantation (TOL-2 Study). METHODS AND ANALYSIS: Sixty-three living donor kidney transplant recipients from six German transplant centres are randomised 2:1 to treatment with MIC (MIC group, N=42) or no treatment with MIC (control arm, N=21). MIC are manufactured from donor peripheral blood mononuclear cells under Good Manufacturing Practice conditions. The primary objective of this trial is to determine the efficacy of MIC treatment together with reduced conventional immunosuppressive therapy in terms of achieving an operational tolerance-like phenotype compared with SoC 12 months after MIC administration. Key secondary endpoints are the number of patient-relevant infections as well as a composite of biopsy-proven acute rejection, graft loss, graft dysfunction or death. Immunosuppressive therapy of MIC-treated patients is reduced during follow-up under an extended immunological monitoring including human leucocyte antigen-antibody testing, and determination of lymphocyte subsets, for example, regulatory B lymphocytes (Breg) and antidonor T cell response. A Data Safety Monitoring Board has been established to allow an independent assessment of safety and efficacy. ETHICS AND DISSEMINATION: Ethical approval has been provided by the Ethics Committee of the Medical Faculty of the University of Heidelberg, Heidelberg, Germany (AFmu-580/2021, 17 March 2022) and from the Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institute, Langen, Germany (Vorlage-Nr. 4586/02, 21 March 2022). Written informed consent will be obtained from all patients and respective donors prior to enrolment in the study. The results from the TOL-2 Study will be published in peer-reviewed medical journals and will be presented at symposia and scientific meetings. TRIAL REGISTRATION NUMBER: NCT05365672.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Doadores Vivos , Padrão de Cuidado , Leucócitos Mononucleares , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como Assunto
8.
Int J Oncol ; 60(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35294040

RESUMO

Chimeric antigen receptor (CAR) T cell therapy with axicabtagene ciloleucel, tisagenlecleucel and brexucabtagen ciloleucel has been adopted as the standard of care for patients with refractory and/or relapsed CD19­positive lymphoid malignancies. Monitoring of kinetics of CAR T cells after administration is crucial for patient follow­up and important to guide clinical decisions for patients subjected to CAR T cell therapy. Information of transgene copies within a CAR T cell product prior to administration, i.e. vector copy numbers, is of high importance to warrant patient safety. However, experimental assays for quantitative CAR T cell monitoring in the open domain are currently lacking. Several institutions have established in­house assays to monitor CAR T cell frequencies. In the present study, the quantitative (q)PCR assay established at the Heidelberg University Hospital (Heidelberg, Germany), i.e. single copy gene­based duplex qPCR, was compared with the digital droplet PCR assay established at the University Medical Center Hamburg­Eppendorf (Hamburg, Germany). Both methods that were independently developed enable accurate and comparable CAR T cell frequency assessment and are useful in the clinical setting.


Assuntos
Antígenos CD19/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia Adotiva , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T/imunologia , Biomarcadores/sangue , Progressão da Doença , Humanos , Reação em Cadeia da Polimerase em Tempo Real
9.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162953

RESUMO

After solid-organ transplantation, reactivation of the cytomegalovirus (CMV) is often observed in seronegative patients and associated with a high risk of disease and mortality. CMV-specific T cells can prevent CMV reactivation. In a phase 1 trial, CMV-seronegative patients with end-stage renal disease listed for kidney transplantation were subjected to CMV phosphoprotein 65 (CMVpp65) peptide vaccination and further investigated for T-cell responses. To this end, CMV-specific CD8+ T cells were characterized by bulk T-cell-receptor (TCR) repertoire sequencing and combined single-cell RNA and TCR sequencing. In patients mounting an immune response to the vaccine, a common SYE(N)E TCR motif known to bind CMVpp65 was detected. CMV-peptide-vaccination-responder patients had TCR features distinct from those of non-responders. In a non-responder patient, a monoclonal inflammatory T-cell response was detected upon CMV reactivation. The identification of vaccine-induced CMV-reactive TCRs motifs might facilitate the development of cellular therapies for patients wait-listed for kidney transplantation.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Falência Renal Crônica/terapia , Receptores de Antígenos de Linfócitos T/genética , Proteínas da Matriz Viral/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Ensaios Clínicos Fase I como Assunto , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/imunologia , Humanos , Falência Renal Crônica/imunologia , Transplante de Rim , Análise de Sequência de RNA , Imagem Individual de Molécula , Proteínas da Matriz Viral/imunologia
10.
Biomedicines ; 10(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35203582

RESUMO

Adoptive cell therapy with NY-ESO-1-specific T cells is a promising option for the treatment of soft tissue sarcoma (STS) but achieves only transient tumor control in the majority of cases. A strategy to optimize this cell therapeutic approach might be the modulation of the expression of the cancer-testis antigen NY-ESO-1 using histone deacetylase inhibitors (HDACis). In this study, the ex vivo effect of combining NY-ESO-1-specific T cells with the clinically approved pan HDACis panobinostat or vorionstat was investigated. Our data demonstrated that STS cells were sensitive to HDACis. Administration of HDACi prior to NY-ESO-1-specific T cells exerted enhanced lysis against the NY-ESO-1+ STS cell line SW982. This correlated with an increase in the NY-ESO-1 and HLA-ABC expression of SW982 cells, as well as increased CD25 expression on NY-ESO-1-specific T cells. Furthermore, the immune reactivity of NY-ESO-1-specific CD8+ T cells in terms of cytokine release was enhanced by HDACis. In summary, pretreatment with HDACis represents a potential means of enhancing the cytotoxic efficacy of NY-ESO-1-specific T cells against NY-ESO-1-positive STS.

11.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055086

RESUMO

Chimeric-antigen-receptor (CAR)-T-cell therapy is already widely used to treat patients who are relapsed or refractory to chemotherapy, antibodies, or stem-cell transplantation. Multiple myeloma still constitutes an incurable disease. CAR-T-cell therapy that targets BCMA (B-cell maturation antigen) is currently revolutionizing the treatment of those patients. To monitor and improve treatment outcomes, methods to detect CAR-T cells in human peripheral blood are highly desirable. In this study, three different detection reagents for staining BCMA-CAR-T cells by flow cytometry were compared. Moreover, a quantitative polymerase chain reaction (qPCR) to detect BCMA-CAR-T cells was established. By applying a cell-titration experiment of BCMA-CAR-T cells, both methods were compared head-to-head. In flow-cytometric analysis, the detection reagents used in this study could all detect BCMA-CAR-T cells at a similar level. The results of false-positive background staining differed as follows (standard deviation): the BCMA-detection reagent used on the control revealed a background staining of 0.04% (±0.02%), for the PE-labeled human BCMA peptide it was 0.25% (±0.06%) and for the polyclonal anti-human IgG antibody it was 7.2% (±9.2%). The ability to detect BCMA-CAR-T cells down to a concentration of 0.4% was similar for qPCR and flow cytometry. The qPCR could detect even lower concentrations (0.02-0.01%). In summary, BCMA-CAR-T-cell monitoring can be reliably performed by both flow cytometry and qPCR. In flow cytometry, reagents with low background staining should be preferred.


Assuntos
Antígeno de Maturação de Linfócitos B/metabolismo , Citometria de Fluxo , Reação em Cadeia da Polimerase , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Antígeno de Maturação de Linfócitos B/genética , Biomarcadores , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Humanos , Imunofenotipagem , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/normas , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/normas , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Antígenos Quiméricos/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Linfócitos T/imunologia
12.
Cytotherapy ; 24(3): 311-319, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34711501

RESUMO

Extracorporeal photopheresis (ECP), a personalized cellular immunotherapy, constitutes a promising treatment for steroid-refractory/-resistant graft-versus-host disease (SR-GvHD), with encouraging clinical response rates. To further investigate its mechanism of action, ECP's effects on T helper (Th) cells as well as on expression of immune checkpoint (PD-1 and Tim-3) and apoptotic (Fas receptor [FasR]) molecules were investigated in 27 patients with SR-GvHD. Our data show that GvHD patients had significantly higher levels of Th2, Th17, Th22 and granulocyte-macrophage colony-stimulating factor (GM-CSF)-positive Th (ThG) cells and clearly lower levels of T follicular helper (Tfh) cells, including Th1- and Th2-like cells, compared with healthy donors. ECP therapy for GvHD was effective through the modulation of different Th subsets: increases of Th22 (1.52-fold) and Tfh cells (1.48-fold) in acute GvHD (aGvHD) and increases of Th2-like Tfh cells (1.74-fold) in chronic GvHD (cGvHD) patients were associated with clinical response. Expression of FasR was further upregulated in CD4+CD8+ T cells. Additionally, Tim-3-expressing effector T cells associated with the severity of GvHD were reduced. Taken together, these data show that ECP therapy exerts immunomodulatory effects by promoting a balanced immune reconstitution and inducing immune tolerance. Therefore it represents an attractive option for the treatment of GvHD.


Assuntos
Doença Enxerto-Hospedeiro , Fotoferese , Linfócitos T CD8-Positivos , Doença Crônica , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Esteroides/uso terapêutico , Células T Auxiliares Foliculares , Regulação para Cima
13.
Cells ; 10(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34831430

RESUMO

Chimeric-antigen-receptor-T (CAR-T) cells are currently revolutionizing the field of cancer immunotherapy. Therefore, there is an urgent need for CAR-T cell monitoring by clinicians to assess cell expansion and persistence in patients. CAR-T cell manufacturers and researchers need to evaluate transduction efficiency and vector copy number for quality control. Here, CAR expression was analyzed in peripheral blood samples from patients and healthy donors by flow cytometry with four commercially available detection reagents and on the gene level by quantitative polymerase chain reaction (qPCR). Flow cytometric analysis of CAR expression showed higher mean CAR expression values for CD19 CAR detection reagent and the F(ab')2 antibody than Protein L and CD19 Protein. In addition, the CD19 CAR detection reagent showed a significantly lower median background staining of 0.02% (range 0.007-0.06%) when compared to the F(ab')2 antibody, CD19 protein and Protein L with 0.80% (range 0.47-1.58%), 0.65% (range 0.25-1.35%) and 0.73% (range 0.44-1.23%). Furthermore, flow cytometry-based CAR-T cell frequencies by CD19 CAR detection reagent showed a good correlation with qPCR results. In conclusion, quality control of CAR-T cell products can be performed by FACS and qPCR. For the monitoring of CAR-T cell frequencies by FACS in patients, CAR detection reagents with a low background staining are preferable.


Assuntos
Citometria de Fluxo/métodos , Imunoterapia Adotiva , Reação em Cadeia da Polimerase/métodos , Antígenos CD19 , Humanos , Indicadores e Reagentes , Sensibilidade e Especificidade
14.
Oncol Rep ; 46(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165175

RESUMO

Chimeric antigen receptor (CAR) T cells directed against CD19 (CD19.CAR T cells) have yielded impressive clinical responses in the treatment of patients with lymphoid malignancies. However, resistance and/or relapse can limit treatment outcome. Risk of tumor escape can be reduced by combining treatment strategies. Selective inhibitors of nuclear export (SINEs) directed against nuclear exportin­1 (XPO1) have demonstrated anti­tumor efficacy in several hematological malignancies. The aim of the present study was to evaluate the combination of CAR T cells with the SINE compounds eltanexor and selinexor. As expected, eltanexor and selinexor were toxic to CD19­positive malignant cells and the sensitivity of cells towards SINEs correlated with the levels of XPO1­expression in ALL cell lines. When SINEs and CAR T cells were simultaneously combined, SINEs exerted toxicity towards CAR T cells and impaired their function affecting cytotoxicity and cytokine release ability. Flow cytometry and western blot analysis revealed that eltanexor decreased the cytoplasmic concentration of the transcription factor phosphorylated­STAT3 in CAR T cells. Due to CAR T­cell toxicity, sequential use of SINEs and CAR T cells was evaluated: Cytotoxicity of CAR T cells increased significantly when target cells were pre­treated with the SINE compound eltanexor. In addition, exhaustion of CAR T cells decreased when target cells were pre­treated with eltanexor. In summary, whereas the concomitant use of SINEs and CAR T cells does not seem advisable, sequential use of SINEs and CAR T cells might improve the anti­tumor efficacy of CAR T cells.


Assuntos
Antígenos CD19/metabolismo , Hidrazinas/farmacologia , Imunoterapia Adotiva/métodos , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Triazóis/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Terapia Combinada , Citoplasma/metabolismo , Humanos , Carioferinas/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo , Proteína Exportina 1
15.
Front Immunol ; 12: 670088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122428

RESUMO

Chimeric antigen receptor T (CAR-T) cells targeting CD19 came into clinical practice for the treatment of B cell lymphoma in 2018. However, patients being treated for B cell lymphoma often suffer from comorbidities such as chronic pain, cardiovascular diseases and arthritis. Thus, these patients frequently receive concomitant medications that include nonsteroidal anti-inflammatory drugs (NSAIDs) like cyclooxygenase (COX) inhibitors. Celecoxib, a selective COX-2 inhibitor, and aspirin, a non-selective COX-1 and COX-2 inhibitor, are being used as anti-inflammatory, analgesic and anti-pyretic drugs. In addition, several studies have also focused on the anti-neoplastic properties of COX-inhibitors. As the influence of COX-inhibitors on CD19.CAR-T cells is still unknown, we investigated the effect of celecoxib and aspirin on the quantity and quality of CD19.CAR-T cells at different concentrations with special regard to cytotoxicity, activation, cytokine release, proliferation and exhaustion. A significant effect on CAR-T cells could be observed for 0.1 mmol/L of celecoxib and for 4 mmol/L of aspirin. At these concentrations, we found that both COX-inhibitors could induce intrinsic apoptosis of CD19.CAR-T cells showing a significant reduction in the ratio of JC-10 red to JC-10 green CAR-T cells from 6.46 ± 7.03 (mean ± SD) to 1.76 ± 0.67 by celecoxib and to 4.41 ± 0.32 by aspirin, respectively. Additionally, the ratios of JC-10 red to JC-10 green Daudi cells were also decreased from 3.41 ± 0.30 to 0.77 ± 0.06 by celecoxib and to 1.26 ± 0.04 by aspirin, respectively. Although the cytokine release by CD19.CAR-T cells upon activation was not hampered by both COX-inhibitors, activation and proliferation of CAR-T cells were significantly inhibited via diminishing the NF-ĸB signaling pathway by a significant down-regulation of expression of CD27 on CD4+ and CD8+ CAR-T cells, followed by a clear decrease of phosphorylated NF-ĸB p65 in both CD4+ and CD8+ CAR-T cells by a factor of 1.8. Of note, COX-inhibitors hampered expansion and induced exhaustion of CAR-T cells in an antigen stress assay. Collectively, our findings indicate that the use of COX-inhibitors is a double-edged sword that not only induces apoptosis in tumor cells but also impairs the quantity and quality of CAR-T cells. Therefore, COX-inhibitors should be used with caution in patients with B cell lymphoma under CAR-T cell therapy.


Assuntos
Antígenos CD19/genética , Aspirina/farmacologia , Celecoxib/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Imunoterapia Adotiva , Linfoma de Células B/terapia , Receptores de Antígenos Quiméricos/genética , Linfócitos T/efeitos dos fármacos , Antígenos CD19/imunologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Células K562 , Ativação Linfocitária/efeitos dos fármacos , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante
16.
Cells ; 10(1)2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466646

RESUMO

NY-ESO-1-specific T cells have shown promising activity in the treatment of soft tissue sarcoma (STS). However, standardized protocols for their generation are limited. Particularly, cost-effectiveness considerations of cell production protocols are of importance for conducting clinical studies. In this study, two different NY-ESO-1-specific T cell production protocols were compared. Major differences between protocols 1 and 2 include culture medium, interleukin-2 and retronectin concentrations, T cell activation strategy, and the transduction process. NY-ESO-1-specific T cells generated according to the two protocols were investigated for differences in cell viability, transduction efficiency, T cell expansion, immunophenotype as well as functionality. NY-ESO-1-specific T cells showed similar viability and transduction efficiency between both protocols. Protocol 1 generated higher absolute numbers of NY-ESO-1-specific T cells. However, there was no difference in absolute numbers of NY-ESO-1-specific T cell subsets with less-differentiated phenotypes accounting for efficient in vivo expansion and engraftment. Furthermore, cells generated according to protocol 1 displayed higher capacity of TNF-α generation, but lower cytotoxic capacities. Overall, both protocols provided functional NY-ESO-1-specific T cells. However, compared to protocol 1, protocol 2 is advantageous in terms of cost-effectiveness. Cell production protocols should be designed diligently to achieve a cost-effective cellular product for further clinical evaluation.


Assuntos
Antígenos de Neoplasias/imunologia , Proteínas de Membrana/imunologia , Sarcoma/imunologia , Linfócitos T Citotóxicos/imunologia , Transferência Adotiva , Técnicas de Cultura de Células , Linhagem Celular , Humanos , Sarcoma/terapia , Linfócitos T Citotóxicos/transplante
17.
Int J Cancer ; 148(2): 419-428, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32683672

RESUMO

Chimeric antigen receptor T (CART) cells targeting CD19 have shown promising results in the treatment of chronic lymphocytic leukemia (CLL). However, efficacy seems to be inferior compared to diffuse large B-cell lymphoma or acute lymphoblastic leukemia. Impaired T-cell fitness of CLL patients may be involved in treatment failure. Less-differentiated naïve-like T cells play an important role in CART expansion and long-term persistence in vivo. These cells are sparse in CLL patients. Therefore, optimization of CART cell production protocols enriching less differentiated T cell subsets may overcome treatment resistance. The B-cell receptor inhibitor ibrutinib targeting Bruton's tyrosine kinase (BTK) is approved for the treatment of CLL. Besides BTK, ibrutinib additionally inhibits interleukin-2-inducible T-cell kinase (ITK) which is involved in T-cell differentiation. To evaluate the effect of ibrutinib on CART cell production, peripheral blood mononuclear cells from nine healthy donors and eight CLL patients were used to generate CART cells. T-cell expansion and phenotype, expression of homing and exhaustion makers as well as functionality of CART cells were evaluated. CART cell generation in the presence of ibrutinib resulted in increased cell viability and expansion of CLL patient-derived CART cells. Furthermore, ibrutinib enriched CART cells with less-differentiated naïve-like phenotype and decreased expression of exhaustion markers including PD-1, TIM-3 and LAG-3. In addition, ibrutinib increased the cytokine release capacity of CLL patient-derived CART cells. In summary, BTK/ITK inhibition with ibrutinib during CART cell culture can improve yield and function of CLL patient-derived CART cell products.


Assuntos
Adenina/análogos & derivados , Imunoterapia Adotiva/métodos , Leucemia Linfocítica Crônica de Células B/terapia , Piperidinas/farmacologia , Receptores de Antígenos de Linfócitos T/biossíntese , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Adenina/farmacologia , Antígenos CD19/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Meios de Cultura , Citocinas/biossíntese , Células HEK293 , Humanos , Células K562 , Leucemia Linfocítica Crônica de Células B/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia
18.
Front Immunol ; 11: 608167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362794

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has shown promising responses in patients with refractory or relapsed aggressive B-cell malignancies that are resistant to conventional chemotherapy or stem cell transplantation. A potentially combinatorial therapeutic strategy may be the inhibition of anti-apoptotic Bcl-2 family proteins, overexpressed in most cancer cells. In this study we investigated the combination of 3rd-generation CD19.CAR-T cells and the BH3 mimetics venetoclax, a Bcl-2 inhibitor, or S63845, a Mcl-1 inhibitor, under three different treatment conditions: pre-sensitization of cancer cells with BH3 mimetics followed by CAR-T cell treatment, simultaneous combination therapy, and the administration of BH3 mimetics after CAR-T cell treatment. Our results showed that administration of CAR-T cells and BH3 mimetics had a significant effect on the quantity and quality of CD19.CAR-T cells. The administration of BH3 mimetics prior to CAR-T cell therapy exerted an enhanced cytotoxic efficacy by upregulating the CD19 expression and pro-apoptotic proteins in highly sensitive tumor cells, and thereby improving both CD19.CAR-T cell cytotoxicity and persistence. In simultaneous and post-treatment approaches, however, the quantity of CAR-T cells was adversely affected. Our findings indicate pre-sensitization of highly sensitive tumor cells with BH3 mimetics could enhance the cytotoxic efficacy of CAR-T cell treatment.


Assuntos
Antineoplásicos/farmacologia , Linfócitos B/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Imunoterapia Adotiva , Leucemia/terapia , Linfoma/terapia , Receptores de Antígenos Quiméricos/genética , Sulfonamidas/farmacologia , Linfócitos T/transplante , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Terapia Combinada , Regulação Leucêmica da Expressão Gênica , Humanos , Células K562 , Leucemia/imunologia , Leucemia/metabolismo , Leucemia/patologia , Linfoma/imunologia , Linfoma/metabolismo , Linfoma/patologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
19.
Cancers (Basel) ; 12(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007926

RESUMO

Chimeric antigen receptor (CAR) T cell (CART) therapy has been established as a treatment option for patients with CD19-positive lymphoid malignancies in both the refractory and the relapsed setting. Displaying significant responses in clinical trials, two second-generation CART products directed against CD19, axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel), have been approved and integrated into the clinical routine. However, experimental assay for quantitative monitoring of both of these CART products in treated patients in the open domain are lacking. To address this issue, we established and validated a quantitative single copy gene (SCG)-based duplex (DP)-PCR assay (SCG-DP-PCR) to quantify CARTs based on the FMC63 single chain variable fragment (scFv), i.e., axi-cel and tisa-cel. This quantitative PCR (qPCR) approach operates without standard curves or calibrator samples, offers a tool to assess cellular kinetics of FMC63 CARTs and allows direct comparison of CART-copies in axi-cel versus tisa-cel patient samples. For treating physicians, SCG-DP-PCR is an important tool to monitor CARTs and guide clinical decisions regarding CART effects in respective patients.

20.
Mol Ther Methods Clin Dev ; 17: 448-454, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32201711

RESUMO

Chimeric antigen receptor (CAR) T cells are considered genetically modified organisms (GMOs) and constitute gene therapy medicinal products. Thus, CAR T cell manufacturing for clinical application is strictly regulated. Appropriate methods to assess vector copy numbers (VCNs) in CAR T cell products and monitoring of CAR T cell frequencies in patients are required. Quantitative polymerase chain reaction (qPCR) is the preferred method for VCN assessment. However, no standardized procedure with high reproducibility has been described yet. Here, we report on a single copy gene (SCG)-based duplex (DP)-qPCR assay (SCG-DP-PCR) to determine VCN in CAR T cell products. SCG-DP-PCR was validated and compared to the absolute standard curve method (ACM) within the framework of a clinical trial treating patients with good manufacturing practice (GMP)-grade CAR T cells at the University Hospital Heidelberg. Methodologically, SCG-DP-PCR displayed technical advantages over ACM and minimized mathematical analysis. SCG-DP-PCR, as a highly reproducible approach, can be used for clinical follow-up of patients treated with CAR T cells or other GMOs and might replace established methods for VCN quantification. This work will enable clinicians to assess VCN, as well as CAR T cell frequencies, in patients as a basis for decisions on subsequent therapies, including repeated CAR T cell administration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA