Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Eng Sci Med Diagn Ther ; 8(3): 031006, 2025 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39473621

RESUMO

Regardless of the way of treatment, persistent deficits in calf muscles in recovered patients from Achilles tendon rupture (ATR) exist long-term postinjury. Studies on calf muscle changes mostly highlight morphological changes in the calf muscles and Achilles tendon. However, limited attention has been given to fascicular changes. Diffusion tensor imaging (DTI) can provide a better understanding of the characteristics and properties of tissues with organized microstructure. In the current study, we used DTI-derived indices (mean diffusivity (MD), fractional anisotropy (FA), and eigenvalues-λ 1, λ 2, and λ 3) and fiber tractography to better understand the soleus muscle after recovery from ATR by comparing the results of injured legs with healthy ones. Our findings suggest that the standard deviations of measured parameters (FA, MD, and eigenvalues) within the soleus muscle are better predictors of the changes associated with the ATR as compared to the control counterpart for the volumetric region of interest (ROI). Additionally, in four out of five participants, smaller tracts were observed in the injured leg compared to the healthy one, as evidenced by the fiber length distribution of the tracts. Altogether, this study demonstrates the feasibility of the DTI and fiber tractography approaches to quantify the fascicular changes in the individuals recovered from ATR.

2.
bioRxiv ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39345508

RESUMO

Reciprocal neuronal connections exist between the internal organs of the body and the nervous system. These projections to and from the viscera play an essential role in maintaining and finetuning organ responses in order to sustain homeostasis and allostasis. Functional maps of brain regions participating in this bidirectional communication have been previously studied in awake humans and anesthetized rodents. To further refine the mechanistic understanding of visceral influence on brain states, however, new paradigms that allow for more invasive, and ultimately more informative, measurements and perturbations must be explored. Further, such paradigms should prioritize human translatability. In the current paper, we address these issues by demonstrating the feasibility of non-anesthetized animal imaging during visceral manipulation. More specifically, we used a barostat interfaced with an implanted gastric balloon to cyclically induce distension of a non-anesthetized rat's stomach during simultaneous BOLD fMRI. General linear modeling and spatial independent component analysis revealed several regions with BOLD activation temporally coincident with the gastric distension stimulus. The ON-OFF (20 mmHg - 0 mmHg) barostat-balloon pressure cycle resulted in widespread BOLD activation of the inferior colliculus, cerebellum, ventral midbrain, and a variety of hippocampal structures. These results suggest that neuroimaging models of gastric manipulation in the non-anesthetized rat are achievable and provide an avenue for more comprehensive studies involving the integration of other neuroscience techniques like electrophysiology. Significance Statement: It is unclear to what extent measurements of brain activity are affected by background, and experimentally unrelated, interoceptive processes. To advance our understanding of ongoing visceral activity's influence on brain states, here we provide a proof of concept, anesthesia-free animal model of visceral manipulation during simultaneous BOLD fMRI. We successfully demonstrated BOLD activation during gastric distension of the unanesthetized rat in both classically reported (cerebellum, hippocampus) and novel (inferior colliculus) regions. This paradigm establishes an important foundation for further interrogation of viscera-brain interactions.

3.
Nutrients ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337615

RESUMO

Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Hiper-Homocisteinemia , Camundongos , Animais , Humanos , Aterosclerose/metabolismo , Dieta , S-Adenosilmetionina/metabolismo , Ácido Fólico/efeitos adversos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Metaboloma , Homocisteína/metabolismo , Apolipoproteínas/metabolismo
4.
Nanomedicine (Lond) ; 19(8): 723-735, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38420919

RESUMO

Vascular cell adhesion molecule-1 (VCAM-1) was identified over 2 decades ago as an endothelial adhesion receptor involved in leukocyte recruitment and cell-based immune responses. In atherosclerosis, a chronic inflammatory disease of the blood vessels that is the leading cause of death in the USA, endothelial VCAM-1 is robustly expressed beginning in the early stages of the disease. The interactions of circulating immune cells with VCAM-1 on the activated endothelial cell surface promote the uptake of monocytes and the progression of atherosclerotic lesions in susceptible vessels. Herein, we review the role of VCAM-1 in atherosclerosis and the use of VCAM-1 binding peptides, antibodies and aptamers as targeting agents for nanoplatforms for early detection and treatment of atherosclerotic disease.


Assuntos
Aterosclerose , Nanopartículas , Humanos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Aterosclerose/diagnóstico , Aterosclerose/tratamento farmacológico , Peptídeos/metabolismo , Membrana Celular/metabolismo , Nanopartículas/uso terapêutico , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Adesão Celular
5.
J Nutr Biochem ; 126: 109562, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38176626

RESUMO

Ketogenic diets (KDs) are very high-fat low-carbohydrate diets that promote nutritional ketosis and are widely used for weight loss, although concerns about potential adverse cardiovascular effects remain. We investigated a very high-fat KD's vascular impact and plasma metabolic signature compared to a non-ketogenic high-fat diet (HFD). Apolipoprotein E deficient (ApoE -/-) mice were fed a KD (%kcal:81:1:18, fat/carbohydrate/protein), a non-ketogenic high-fat diet with half of the fat content (HFD) (%kcal:40:42:18, fat/carbohydrate/protein) for 12 weeks. Plasma samples were used to quantify the major ketone body beta-hydroxybutyrate (BHB) and several pro-inflammatory cytokines (IL-6, MCP-1, MIP-1alpha, and TNF alpha), and to targeted metabolomic profiling by mass spectrometry. In addition, aortic atherosclerotic lesions were quantified ex-vivo by magnetic resonance imaging (MRI) on a 14-tesla system. KD was atherogenic when compared to the control diet, but KD mice, when compared to the HFD group (1) had markedly higher levels of BHB and lower levels of cytokines, confirming the presence of ketosis that alleviated the well-established fat-induced systemic inflammation; (2) displayed significant changes in the plasma metabolome that included a decrease in lipophilic metabolites and an increase in hydrophilic metabolites; (3) had significantly lower levels of several atherogenic lipid metabolites, including phosphatidylcholines, cholesterol esters, sphingomyelins, and ceramides; and (4) presented significantly lower aortic plaque burden. KD was atherogenic and was associated with specific metabolic changes but alleviated the fat-induced inflammation and lessened the progression of atherosclerosis when compared to the HFD.


Assuntos
Aterosclerose , Cetose , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/etiologia , Aterosclerose/patologia , Inflamação/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Metaboloma
6.
Front Neurol ; 14: 1272374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965166

RESUMO

Introduction: Neurovascular decoupling is a common consequence after brain injuries like sports-related concussion. Failure to appropriately match cerebral blood flow (CBF) with increases in metabolic demands of the brain can lead to alterations in neurological function and symptom presentation. Therapeutic hypothermia has been used in medicine for neuroprotection and has been shown to improve outcome. This study aimed to examine the real time effect of selective head cooling on healthy controls and concussed athletes via magnetic resonance spectroscopy (MRS) and arterial spin labeling (ASL) measures. Methods: 24 participants (12 controls; 12 concussed) underwent study procedures including the Post-Concussion Symptom Severity (PCSS) Rating Form and an MRI cooling protocol (pre-cooling (T1 MPRAGE, ASL, single volume spectroscopy (SVS)); during cooling (ASL, SVS)). Results: Results showed general decreases in brain temperature as a function of time for both groups. Repeated measures ANOVA showed a significant main effect of time (F = 7.94, p < 0.001) and group (F = 22.21, p < 0.001) on temperature, but no significant interaction of group and time (F = 1.36, p = 0.237). CBF assessed via ASL was non-significantly lower in concussed individuals at pre-cooling and generalized linear mixed model analyses demonstrated a significant main effect of time for the occipital left ROI (F = 11.29, p = 0.002) and occipital right ROI (F = 13.39, p = 0.001). There was no relationship between any MRI metric and PCSS symptom burden. Discussion: These findings suggest the feasibility of MRS thermometry to monitor alterations of brain temperature in concussed athletes and that metabolic responses in response to cooling after concussion may differ from controls.

7.
MAGMA ; 36(6): 887-896, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37421501

RESUMO

OBJECTIVES: Pre-clinical models of human atherosclerosis are extensively used; however, traditional histological methods do not allow for a holistic view of vascular lesions. We describe an ex-vivo, high-resolution MRI method that allows the 3 dimensional imaging of the vessel for aortic plaque visualization and quantification. MATERIALS AND METHODS: Aortas from apolipoprotein-E-deficient (apoE-/-) mice fed an atherogenic diet (group 1) or a control diet (group 2) were subjected to 14 T MR imaging using a 3D gradient echo sequence. The obtained data sets were reconstructed (Matlab), segmented, and analyzed (Avizo). The aortas were further sectioned and subjected to traditional histological analysis (Oil-Red O and hematoxylin staining) for comparison. RESULTS: A resolution up to 15 × 10x10 µm3 revealed that plaque burden (mm3) was significantly (p < 0.05) higher in group 1 (0.41 ± 0.25, n = 4) than in group 2 (0.01 ± 0.01, n = 3). The achieved resolution provided similar detail on the plaque and the vessel wall morphology compared with histology. Digital image segmentation of the aorta's lumen, plaque, and wall offered three-dimensional visualizations of the entire, intact aortas. DISCUSSION: 14 T MR microscopy provided histology-like details of pathologically relevant vascular lesions. This work may provide the path research needs to take to enable plaque characterization in clinical applications.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Microscopia , Aterosclerose/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Aorta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
8.
Neuroimage ; 268: 119887, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681134

RESUMO

Visual stimulation-evoked blood-oxygen-level dependent (BOLD) responses can exhibit more complex temporal dynamics than a simple monophasic response. For instance, BOLD responses sometimes include a phase of positive response followed by a phase of post-stimulus undershoot. Whether the BOLD response during these phases reflects the underlying neuronal signal fluctuations or is contributed by non-neuronal physiological factors remains elusive. When presenting blocks of sustained (i.e. DC) light ON-OFF stimulations to unanesthetized rats, we observed that the response following a decrease in illumination (i.e. OFF stimulation-evoked BOLD response) in the visual cortices displayed reproducible multiple phases, including an initial positive BOLD response, followed by an undershoot and then an overshoot before the next ON trial. This multi-phase BOLD response did not result from the entrainment of the periodic stimulation structure. When we measured the neural correlates of these responses, we found that the high-frequency band from the LFP power (300 - 3000 Hz, multi-unit activity (MUA)), but not the power in the gamma band (30 - 100 Hz) exhibited the same multiphasic dynamics as the BOLD signal. This study suggests that the post-stimulus phases of the BOLD response can be better explained by the high-frequency neuronal signal.


Assuntos
Imageamento por Ressonância Magnética , Córtex Visual , Ratos , Animais , Potenciais Evocados Visuais , Neurônios/fisiologia , Córtex Visual/fisiologia , Estimulação Luminosa , Oxigênio , Mapeamento Encefálico
9.
Biomedicines ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35625895

RESUMO

Ketogenic diets (KDs) are very low-carbohydrate, very high-fat diets which promote nutritional ketosis and impact energetic metabolism. Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol transport across cell membranes and are critical players in energy homeostasis. Altered AQP expression or function impacts fat accumulation and related comorbidities, such as the metabolic syndrome. Here, we sought to determine whether nutritional ketosis impacts AQPs expression in the context of an atherogenic model. To do this, we fed ApoE-/- (apolipoprotein E-deficient) mice, a model of human atherosclerosis, a KD (Kcal%: 1/81/18, carbohydrate/fat/protein) or a control diet (Kcal%: 70/11/18, carbohydrate/fat/protein) for 12 weeks. Plasma was collected for biochemical analysis. Upon euthanasia, livers, white adipose tissue (WAT), and brown adipose tissue (BAT) were used for gene expression studies. Mice fed the KD and control diets exhibited similar body weights, despite the profoundly different fat contents in the two diets. Moreover, KD-fed mice developed nutritional ketosis and showed increased expression of thermogenic genes in BAT. Additionally, these mice presented an increase in Aqp9 transcripts in BAT, but not in WAT, which suggests the participation of Aqp9 in the influx of excess plasma glycerol to fuel thermogenesis, while the up-regulation of Aqp7 in the liver suggests the involvement of this aquaporin in glycerol influx into hepatocytes. The relationship between nutritional ketosis, energy homeostasis, and the AQP network demands further investigation.

10.
Plant Methods ; 18(1): 47, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410361

RESUMO

BACKGROUND: Studying dynamic processes in living organisms with MRI is one of the most promising research areas. The use of paramagnetic compounds as contrast agents (CA), has proven key to such studies, but so far, the lack of appropriate techniques limits the application of CA-technologies in experimental plant biology. The presented proof-of-principle aims to support method and knowledge transfer from medical research to plant science. RESULTS: In this study, we designed and tested a new approach for plant Dynamic Contrast Enhanced Magnetic Resonance Imaging (pDCE-MRI). The new approach has been applied in situ to a cereal crop (Hordeum vulgare). The pDCE-MRI allows non-invasive investigation of CA allocation within plant tissues. In our experiments, gadolinium-DTPA, the most commonly used contrast agent in medical MRI, was employed. By acquiring dynamic T1-maps, a new approach visualizes an alteration of a tissue-specific MRI parameter T1 (longitudinal relaxation time) in response to the CA. Both, the measurement of local CA concentration and the monitoring of translocation in low velocity ranges (cm/h) was possible using this CA-enhanced method. CONCLUSIONS: A novel pDCE-MRI method is presented for non-invasive investigation of paramagnetic CA allocation in living plants. The temporal resolution of the T1-mapping has been significantly improved to enable the dynamic in vivo analysis of transport processes at low-velocity ranges, which are common in plants. The newly developed procedure allows to identify vascular regions and to estimate their involvement in CA allocation. Therefore, the presented technique opens a perspective for further development of CA-aided MRI experiments in plant biology.

11.
Nutrients ; 13(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684577

RESUMO

Hyperhomocysteneinemia (HHcy) is common in the general population and is a risk factor for atherosclerosis by mechanisms that are still elusive. A hypomethylated status of epigenetically relevant targets may contribute to the vascular toxicity associated with HHcy. Ketogenic diets (KD) are diets with a severely restricted amount of carbohydrates that are being widely used, mainly for weight-loss purposes. However, studies associating nutritional ketosis and HHcy are lacking. This pilot study investigates the effects of mild HHcy induced by nutritional manipulation of the methionine metabolism in the absence of dietary carbohydrates on disease progression and specific epigenetic changes in the apolipoprotein-E deficient (apoE-/-) mouse model. ApoE-/- mice were either fed a KD, a diet with the same macronutrient composition but low in methyl donors (low methyl KD, LMKD), or control diet. After 4, 8 or 12 weeks plasma was collected for the quantification of: (1) nutritional ketosis, (i.e., the ketone body beta-hydroxybutyrate using a colorimetric assay); (2) homocysteine by HPLC; (3) the methylating potential S-adenosylmethionine to S-adenosylhomocysteine ratio (AdoHcy/AdoMet) by LC-MS/MS; and (4) the inflammatory cytokine monocyte chemoattractant protein 1 (MCP1) by ELISA. After 12 weeks, aortas were collected to assess: (1) the vascular AdoHcy/AdoMet ratio; (2) the volume of atherosclerotic lesions by high-field magnetic resonance imaging (14T-MRI); and (3) the content of specific epigenetic tags (H3K27me3 and H3K27ac) by immunofluorescence. The results confirmed the presence of nutritional ketosis in KD and LMKD mice but not in the control mice. As expected, mild HHcy was only detected in the LMKD-fed mice. Significantly decreased MCP1 plasma levels and plaque burden were observed in control mice versus the other two groups, together with an increased content of one of the investigated epigenetic tags (H3K27me3) but not of the other (H3K27ac). Moreover, we are unable to detect any significant differences at the p < 0.05 level for MCP1 plasma levels, vascular AdoMet:AdoHcy ratio levels, plaque burden, and specific epigenetic content between the latter two groups. Nevertheless, the systemic methylating index was significantly decreased in LMKD mice versus the other two groups, reinforcing the possibility that the levels of accumulated homocysteine were insufficient to affect vascular transmethylation reactions. Further studies addressing nutritional ketosis in the presence of mild HHcy should use a higher number of animals and are warranted to confirm these preliminary observations.


Assuntos
Apolipoproteínas E/deficiência , Metilação de DNA/genética , Dieta Cetogênica , Epigênese Genética , Acetilação , Animais , Peso Corporal , Quimiocina CCL2/sangue , Histonas/metabolismo , Homocisteína/sangue , Cetose/sangue , Cetose/genética , Lisina/metabolismo , Masculino , Metaboloma , Camundongos , Projetos Piloto , Placa Aterosclerótica/sangue , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Processamento de Proteína Pós-Traducional
12.
Biomedicines ; 9(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557105

RESUMO

The dysfunction of vascular endothelial cells is profoundly implicated in the pathogenesis of atherosclerosis and cardiovascular disease, the global leading cause of death. Aquaporins (AQPs) are membrane channels that facilitate water and glycerol transport across cellular membranes recently implicated in the homeostasis of the cardiovascular system. Apolipoprotein-E deficient (apoE-/-) mice are a common model to study the progression of atherosclerosis. Nevertheless, the pattern of expression of AQPs in this atheroprone model is poorly characterized. In this study, apoE-/- mice were fed an atherogenic high-fat (HF) or a control diet. Plasma was collected at multiple time points to assess metabolic disturbances. At the endpoint, the aortic atherosclerotic burden was quantified using high field magnetic resonance imaging. Moreover, the transcriptional levels of several AQP isoforms were evaluated in the liver, white adipocyte tissue (WAT), and brown adipocyte tissue (BAT). The results revealed that HF-fed mice, when compared to controls, presented an exacerbated systemic inflammation and atherosclerotic phenotype, with no major differences in systemic methylation status, circulating amino acids, or plasma total glutathione. Moreover, an overexpression of the isoform AQP5 was detected in all studied tissues from HF-fed mice when compared to controls. These results suggest a novel role for AQP5 on diet-induced atherosclerosis that warrants further investigation.

13.
MAGMA ; 34(2): 285-295, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32729094

RESUMO

OBJECTIVES: Thrombosis is a leading cause of failure for cardiovascular devices. While computational simulations are a powerful tool to predict thrombosis and evaluate the risk for medical devices, limited experimental data are available to validate the simulations. The aim of the current study is to provide experimental data of a growing thrombus for device-induced thrombosis. MATERIALS AND METHODS: Thrombosis within a backward-facing step (BFS), or sudden expansion was investigated, using bovine and human blood circulated through the BFS model for 30 min, with a constant inflow rate of 0.76 L/min. Real-time three-dimensional flow-compensated magnetic resonance imaging (MRI), supported with Magnevist, a contrast agent improving thrombus delineation, was applied to quantify thrombus deposition and growth within the model. RESULTS: The study showed that the BFS model induced a flow recirculation region, which facilitated thrombosis. By 30 min, in comparison to bovine blood, human blood resulted in smaller thrombus formation, in terms of the length (13.3 ± 0.6 vs. 18.1 ± 1.3 mm), height (2.3 ± 0.1 vs. 2.6 ± 0.04 mm), surface area exposed to blood (0.67 ± 0.03 vs 1.05 ± 0.08 cm2), and volume (0.069 ± 0.004 vs. 0.093 ± 0.007 cm3), with p < 0.01. Normalization of the thrombus measurements, which excluded the flow recirculation effects, suggested that the thrombus sizes increased during the first 15 min and stabilized after 20 min. Blood properties, including viscosity, hematocrit, and platelet count affected thrombosis. CONCLUSION: For the first time, contrast agent-supported real-time MRI was performed to investigate thrombus deposition and growth within a sudden expansion. This study provides experimental data for device-induced thrombosis, which is valuable for validation of computational thrombosis simulations.


Assuntos
Trombose , Animais , Bovinos , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética
14.
Artigo em Inglês | MEDLINE | ID: mdl-32984280

RESUMO

Tendon mechanical properties respond to altered load in adults, but how load history during growth affects adult tendon properties remains unclear. To address this question, we adopted an avian model in which we altered the mechanical load environment across the growth span. Animals were divided at 2 weeks of age into three groups: (1) an exercise control group given the opportunity to perform high-acceleration movements (EXE, n = 8); (2) a sedentary group restricted from high-intensity exercise (RES, n = 8); and (3) a sedentary group also restricted from high-intensity exercise and in which the gastrocnemius muscles were partially paralyzed using repeated bouts of botulinum toxin-A injections (RES-BTX, n = 8). Video analysis of bird movement confirmed the restrictions eliminated high-intensity exercise and did not alter time spent walking and sitting between groups. At skeletal maturity (33-35 weeks) animals were sacrificed for analysis, consisting of high-field MRI and material load testing, of both the entire free Achilles tendon and the tendon at the bone-tendon junction. Free tendon stiffness, modulus, and hysteresis were unaffected by variation in load environment. Further, the bone-tendon junction cross-sectional area, stress, and strain were also unaffected by variations in load environment. These results suggest that: (a) a baseline level of low-intensity activity (standing and walking) may be sufficient to maintain tendon growth; and (b) if this lower threshold of tendon load is met, non-mechanical mediated tendon growth may override the load-induced mechanotransduction signal attributed to tendon remodeling in adults of the same species. These results are important for understanding of musculoskeletal function and tendon health in growing individuals.

15.
Nutrients ; 12(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717800

RESUMO

Hyperhomocysteinemia (HHcy) is a risk factor for atherosclerosis through mechanisms which are still incompletely defined. One possible mechanism involves the hypomethylation of the nuclear histone proteins to favor the progression of atherosclerosis. In previous cell studies, hypomethylating stress decreased a specific epigenetic tag (the trimethylation of lysine 27 on histone H3, H3K27me3) to promote endothelial dysfunction and activation, i.e., an atherogenic phenotype. Here, we conducted a pilot study to investigate the impact of mild HHcy on vascular methylating index, atherosclerosis progression and H3K27me3 aortic content in apolipoprotein E-deficient (ApoE -/-) mice. In two different sets of experiments, male mice were fed high-fat, low in methyl donors (HFLM), or control (HF) diets for 16 (Study A) or 12 (Study B) weeks. At multiple time points, plasma was collected for (1) quantification of total homocysteine (tHcy) by high-performance liquid chromatography; or (2) the methylation index of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH ratio) by liquid chromatography tandem-mass spectrometry; or (3) a panel of inflammatory cytokines previously implicated in atherosclerosis by a multiplex assay. At the end point, aortas were collected and used to assess (1) the methylating index (SAM:SAH ratio); (2) the volume of aortic atherosclerotic plaque assessed by high field magnetic resonance imaging; and (3) the vascular content of H3K27me3 by immunohistochemistry. The results showed that, in both studies, HFLM-fed mice, but not those mice fed control diets, accumulated mildly elevated tHcy plasmatic concentrations. However, the pattern of changes in the inflammatory cytokines did not support a major difference in systemic inflammation between these groups. Accordingly, in both studies, no significant differences were detected for the aortic methylating index, plaque burden, and H3K27me3 vascular content between HF and HFLM-fed mice. Surprisingly however, a decreased plasma SAM: SAH was also observed, suggesting that the plasma compartment does not always reflect the vascular concentrations of these two metabolites, at least in this model. Mild HHcy in vivo was not be sufficient to induce vascular hypomethylating stress or the progression of atherosclerosis, suggesting that only higher accumulations of plasma tHcy will exhibit vascular toxicity and promote specific epigenetic dysregulation.


Assuntos
Aterosclerose , Dieta/efeitos adversos , Progressão da Doença , Histonas/metabolismo , Hiper-Homocisteinemia/metabolismo , Animais , Aorta/diagnóstico por imagem , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/diagnóstico por imagem , Aterosclerose/genética , Citocinas , Metilação de DNA , Epigênese Genética , Hiper-Homocisteinemia/genética , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Projetos Piloto , Placa Aterosclerótica , S-Adenosilmetionina/metabolismo
16.
Brain Struct Funct ; 225(1): 227-240, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31802256

RESUMO

Although often used as a nuisance in resting-state functional magnetic resonance imaging (rsfMRI), the global brain signal in humans and anesthetized animals has important neural basis. However, our knowledge of the global signal in awake rodents is sparse. To bridge this gap, we systematically analyzed rsfMRI data acquired with a conventional single-echo (SE) echo planar imaging (EPI) sequence in awake rats. The spatial pattern of rsfMRI frames during peaks of the global signal exhibited prominent co-activations in the thalamo-cortical and hippocampo-cortical networks, as well as in the basal forebrain, hinting that these neural networks might contribute to the global brain signal in awake rodents. To validate this concept, we acquired rsfMRI data using a multi-echo (ME) EPI sequence and removed non-neural components in the rsfMRI signal. Consistent co-activation patterns were obtained in extensively de-noised ME-rsfMRI data, corroborating the finding from SE-rsfMRI data. Furthermore, during rsfMRI experiments, we simultaneously recorded neural spiking activities in the hippocampus using GCaMP-based fiber photometry. The hippocampal calcium activity exhibited significant correspondence with the global rsfMRI signal. These data collectively suggest that the global rsfMRI signal contains significant neural components that involve coordinated activities in the thalamo-cortical and hippocampo-cortical networks. These results provide important insight into the neural substrate of the global brain signal in awake rodents.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Animais , Mapeamento Encefálico , Sinalização do Cálcio , Hipocampo/fisiologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/fisiologia , Imagem Óptica , Ratos Long-Evans
17.
Biofabrication ; 11(1): 015009, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30468153

RESUMO

The scalability of cell aggregates such as spheroids, strands, and rings has been restricted by diffusion of nutrient and oxygen into their core. In this study, we introduce a novel concept in generating tissue building blocks with micropores, which represents an alternative solution for vascularization. Sodium alginate porogens were mixed with human adipose-derived stem cells, and loaded into tubular alginate capsules, followed by de-crosslinking of the capsules. The resultant cellular structure exhibited a porous morphology and formed cell aggregates in the form of strands, called 'porous tissue strands (pTSs).' Three-dimensional reconstructions show that pTSs were able to maintain ∼25% porosity with a high pore interconnectivity (∼85%) for 3 weeks. Owing to the porous structure, pTSs showed up-regulated cell viability and proliferation rate as compared to solid counterparts throughout the culture period. pTSs also demonstrated self-assembly capability through tissue fusion yielding larger-scale patches. In this paper, chondrogenesis and osteogenesis of pTSs were also demonstrated, where the porous microstructure up-regulated both chondrogenic and osteogenic functionalities indicated by cartilage- and bone-specific immunostaining, quantitative biochemical assessment and gene expression. These findings indicated the functionality of pTSs, which possessed controllable porosity and self-assembly capability, and had great potential to be utilized as tissue building blocks in distinct applications such as cartilage and bone regeneration.


Assuntos
Tecido Adiposo/citologia , Células-Tronco/citologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Alginatos/química , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Porosidade
18.
MAGMA ; 31(5): 665-676, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29644479

RESUMO

OBJECTIVES: The need for affordable and appropriate medical technologies for developing countries continues to rise as challenges such as inadequate energy supply, limited technical expertise, and poor infrastructure persist. Low-field magnetic resonance imaging (LF MRI) is a technology that can be tailored to meet specific imaging needs within such countries. Its low power requirements and the possibility of operating in minimally shielded or unshielded environments make it especially attractive. Although the technology has been widely demonstrated over several decades, it is yet to be shown that it can be diagnostic and improve patient outcomes in clinical applications. We here demonstrate the robustness of prepolarizing MRI (PMRI) technology for assembly and deployment in developing countries for the specific application to infant hydrocephalus. Hydrocephalus treatment planning and management requires only modest spatial resolution, such that the brain can be distinguished from fluid-tissue contrast detail within the brain parenchyma is not essential. MATERIALS AND METHODS: We constructed an internally shielded PMRI system based on the Lee-Whiting coil system with a 22-cm diameter of spherical volume. RESULTS: In an unshielded room, projection phantom images were acquired at 113 kHz with in-plane resolution of 3 mm × 3 mm, by introducing gradient fields of sufficient magnitude to dominate the 5000 ppm inhomogeneity of the readout field. DISCUSSION: The low cost, straightforward assembly, deployment potential, and maintenance requirements demonstrate the suitability of our PMRI system for developing countries. Further improvement in image spatial resolution and contrast of LF MRI will broaden its potential clinical utility beyond hydrocephalus.


Assuntos
Hidrocefalia/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Líquido Cefalorraquidiano , Meios de Contraste , Desenho de Equipamento , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
19.
Brain Imaging Behav ; 12(3): 891-900, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28712093

RESUMO

The search for effective treatment facilitating recovery from concussive injury, as well as reducing risk for recurrent concussion is an ongoing challenge. This study aimed to determine: a) feasibility of selective brain cooling to facilitate clinical symptoms resolution, and b) biological functions of the brain within athletes in acute phase of sports-related concussion. Selective brain cooling for 30 minutes using WElkins sideline cooling system was administered to student-athletes suffering concussive injury (n=12; tested within 5±3 days) and those without history of concussion (n=12). fMRI and ASL sequences were obtained before and immediately after cooling to better understanding the mechanism by which cooling affects neurovascular coupling. Concussed subjects self-reported temporary relief from physical symptoms after cooling. There were no differences in the number or strength of functional connections within Default Mode Network (DMN) between groups prior to cooling. However, we observed a reduction in the strength and number of connections of the DMN with other ROIs in both groups after cooling. Unexpectedly, we observed a significant increase in cerebral blood flow (CBF) assessed by ASL after selective cooling in the concussed subjects compared to the normal controls. We suggest that compromised neurovascular coupling in acute phase of injury may be temporarily restored by cooling to match CBF with surges in the metabolic demands of the brain. Upon further validation, selective brain cooling could be a potential clinical tool in the minimization of symptoms and pathological changes after concussion.


Assuntos
Traumatismos em Atletas/terapia , Concussão Encefálica/etiologia , Concussão Encefálica/terapia , Encéfalo , Hipotermia Induzida/métodos , Doença Aguda , Adolescente , Atletas , Traumatismos em Atletas/diagnóstico por imagem , Traumatismos em Atletas/fisiopatologia , Temperatura Corporal , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Circulação Cerebrovascular , Estudos de Coortes , Estudos de Viabilidade , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Descanso , Resultado do Tratamento , Adulto Jovem
20.
Front Hum Neurosci ; 11: 369, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790902

RESUMO

The brain and skull represent a complex arrangement of integrated anatomical structures composed of various cell and tissue types that maintain structural and functional association throughout development. Morphological integration, a concept developed in vertebrate morphology and evolutionary biology, describes the coordinated variation of functionally and developmentally related traits of organisms. Syndromic craniosynostosis is characterized by distinctive changes in skull morphology and perceptible, though less well studied, changes in brain structure and morphology. Using mouse models for craniosynostosis conditions, our group has precisely defined how unique craniosynostosis causing mutations in fibroblast growth factor receptors affect brain and skull morphology and dysgenesis involving coordinated tissue-specific effects of these mutations. Here we examine integration of brain and skull in two mouse models for craniosynostosis: one carrying the FGFR2c C342Y mutation associated with Pfeiffer and Crouzon syndromes and a mouse model carrying the FGFR2 S252W mutation, one of two mutations responsible for two-thirds of Apert syndrome cases. Using linear distances estimated from three-dimensional coordinates of landmarks acquired from dual modality imaging of skull (high resolution micro-computed tomography and magnetic resonance microscopy) of mice at embryonic day 17.5, we confirm variation in brain and skull morphology in Fgfr2cC342Y/+ mice, Fgfr2+/S252W mice, and their unaffected littermates. Mutation-specific variation in neural and cranial tissue notwithstanding, patterns of integration of brain and skull differed only subtly between mice carrying either the FGFR2c C342Y or the FGFR2 S252W mutation and their unaffected littermates. However, statistically significant and substantial differences in morphological integration of brain and skull were revealed between the two mutant mouse models, each maintained on a different strain. Relative to the effects of disease-associated mutations, our results reveal a stronger influence of the background genome on patterns of brain-skull integration and suggest robust genetic, developmental, and evolutionary relationships between neural and skeletal tissues of the head.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA