Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Ind Health ; 38(9): 544-555, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35603521

RESUMO

Polymeric polyisocyanate prepolymer substances are reactive intermediates used in the manufacture of various polyurethane products. Knowledge of their occupational and environmental hazard properties is essential for product stewardship and industrial hygiene purposes. This work reports on the systematic design of a program to explore how structural features (i.e., types of polymeric polyol and diisocyanate reactants, functionality) and physical-chemical properties (i.e., octanol-water partition coefficient [log Kow], viscosity, molecular weight) of a group of 10 toluene diisocyanate (TDI)- and methylene diphenyl diisocyanate (MDI)-based monomer-depleted prepolymer substances can be related to their exposure and hazard potentials. The revelation of trends or thresholds in such relationships could form a basis for regulatory screening of existing or new prepolymer substances, while also informing the design of substances having reduced exposure and/or hazard profiles. As a first step, the aquatic exposure and hazard potentials of these 10 substances were investigated. The results of this investigation showed that yields of dissolved reaction products (derived from non-purgeable organic carbon measurements and carbon contents of the parent prepolymers) were inversely correlated with the calculated log Kow of the substances. For prepolymer loading rates of both 100 and 1000 mg/L in water, the average dissolved reaction product yields ranged from ≤1% to 32% and from ≤0.1% to 25%, respectively, over calculated log Kow values ranging from -4.8 to 45. For both loading rates, dissolved reaction products were not quantifiable where the calculated log Kow value was >10. Yet, none of the 10 prepolymers and tested loading rates exhibited acute adverse effects on the aquatic invertebrate, Daphnia magna, in the 48-h acute immobilization test. From a product stewardship perspective, polymeric prepolymers of TDI and MDI within the investigated domain and concentration range are not expected to be hazardous in the aquatic environment.


Assuntos
Poliuretanos , Tolueno 2,4-Di-Isocianato , Animais , Carbono , Daphnia , Poliuretanos/toxicidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA