Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(5): 2718-2726, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38275205

RESUMO

Glycation reactions in food lead to the formation of the Amadori rearrangement product (ARP) N-ε-fructosyllysine (fructoselysine, FL), which is taken up with the daily diet and comes into contact with the gut microbiota during digestion. In the present study, nine commercially available probiotic preparations as well as single pure strains thereof were investigated for their FL-degrading capability under anaerobic conditions. One of the commercial preparations as well as three single pure strains thereof was able to completely degrade 0.25 mM FL within 72 h. Three new deglycating lactic acid bacteria species, namely, Lactobacillus buchneri DSM 20057, Lactobacillus jensenii DSM 20557, and Pediococcus acidilactici DSM 25404, could be identified. Quantitative experiments showed that FL was completely deglycated to lysine. Using 13C6-labeled FL as the substrate, it could be proven that the sugar moiety of the Amadori product is degraded to lactic acid, showing for the first time that certain lactic acid bacteria can utilize the sugar moiety as a substrate for lactic acid fermentation.


Assuntos
Lactobacillales , Probióticos , Lisina/metabolismo , Bactérias/metabolismo , Lactobacillales/metabolismo , Açúcares , Ácido Láctico
2.
iScience ; 26(9): 107539, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636069

RESUMO

The dynamic nature of the actin cytoskeleton is required to coordinate many cellular processes, and a loss of its plasticity has been linked to accelerated cell aging and attenuation of adaptive response mechanisms. Cofilin is an actin-binding protein that controls actin dynamics and has been linked to mitochondrial signaling pathways that control drug resistance and cell death. Here we show that cofilin-driven chronic depolarization of the actin cytoskeleton activates cell wall integrity mitogen-activated protein kinase (MAPK) signalling and disrupts lipid homeostasis in a voltage-dependent anion channel (VDAC)-dependent manner. Expression of the cof1-5 mutation, which reduces the dynamic nature of actin, triggers loss of cell wall integrity, vacuole fragmentation, disruption of lipid homeostasis, lipid droplet (LD) accumulation, and the promotion of cell death. The integrity of the actin cytoskeleton is therefore essential to maintain the fidelity of MAPK signaling, lipid homeostasis, and cell health in S. cerevisiae.

3.
Cells ; 10(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572064

RESUMO

Autophagy is a cellular recycling program which efficiently reduces the cellular burden of ageing. Autophagy is characterised by nucleation of isolation membranes, which grow in size and further expand to form autophagosomes, engulfing cellular material to be degraded by fusion with lysosomes (vacuole in yeast). Autophagosomal membranes do not bud from a single cell organelle, but are generated de novo. Several lipid sources for autophagosomal membranes have been identified, but the whole process of their generation is complex and not entirely understood. In this study, we investigated how the mitochondrial outer membrane protein porin 1 (Por1), the yeast orthologue of mammalian voltage-dependent anion channel (VDAC), affects autophagy in yeast. We show that POR1 deficiency reduces the autophagic capacity and leads to changes in vacuole and lipid homeostasis. We further investigated whether limited phosphatidylethanolamine (PE) availability in por1∆ was causative for reduced autophagy by overexpression of the PE-generating phosphatidylserine decarboxylase 1 (Psd1). Altogether, our results show that POR1 deficiency is associated with reduced autophagy, which can be circumvented by additional PSD1 overexpression. This suggests a role for Por1 in Psd1-mediated autophagy regulation.


Assuntos
Autofagossomos/metabolismo , Autofagia , Carboxiliases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfatidiletanolaminas/metabolismo , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Carboxiliases/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Porinas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA