Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(2): 645-651, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36602545

RESUMO

Self-assembled superparticles composed of colloidal quantum dots establish microsphere cavities that support optically pumped lasing from whispering gallery modes. Here, we report on the time- and excitation fluence-dependent lasing properties of CdSe/CdS quantum dot superparticles. Spectra collected under constant photoexcitation reveal that the lasing modes are not temporally stable but instead blue-shift by more than 30 meV over 15 min. To counter this effect, we establish a high-fluence light-soaking protocol that reduces this blue-shift by more than an order of magnitude to 1.7 ± 0.5 meV, with champion superparticles displaying mode blue-shifts of <0.5 meV. Increasing the pump fluence allows for optically controlled, reversible, color-tunable red-to-green lasing. Combining these two paradigms suggests that quantum dot superparticles could serve in applications as low-cost, robust, solution-processable, tunable microlasers.

2.
Nano Lett ; 22(5): 1992-2000, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226509

RESUMO

Patterning materials with nanoscale features opens many research opportunities ranging from fundamental science to technological applications. However, current nanofabrication methods are ill-suited for sub-5 nm patterning and pattern transfer. We demonstrate the use of colloidal lithography to transfer an anisotropic pattern of discrete features into substrates with a critical dimension below 5 nm. The assembly of monodisperse, anisotropic nanocrystals (NCs) with a rhombic-plate morphology spaced by dendrimer ligands results in a well-ordered monolayer that serves as a 2D anisotropic hard mask pattern. This pattern is transferred into the underlying substrate using dry etching followed by removal of the NC mask. We exemplify this approach by fabricating an array of pillars with a rhombic cross-section and edge-to-edge spacing of 4.4 ± 1.1 nm. The fabrication approach enables broader access to patterning materials at the deep nanoscale by implementing innovative processes into well-established fabrication methods while minimizing process complexity.

3.
ACS Nano ; 16(2): 1847-1856, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35025204

RESUMO

Milled nanodiamonds containing nitrogen-vacancy (NV) centers are nanoscale quantum sensors that form colloidal dispersions. However, variations in their size, shape, and surface chemistry limit the ability to position individual nanodiamonds and statistically study properties that affect their optical and quantum characteristics. Here, we present a scalable strategy to form ordered arrays of nanodiamonds using capillary-driven, template-assisted self-assembly. We demonstrate the precise spatial arrangement of isolated nanodiamonds with diameters below 50 nm across millimeter-scale areas. Measurements of over 200 assembled nanodiamonds yield a statistical understanding of their structural, optical, and quantum properties. The NV centers' spin and charge properties are uncorrelated with nanodiamond size but rather are consistent with heterogeneity in their nanoscale environment.

4.
ACS Nano ; 15(10): 15667-15675, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34495639

RESUMO

Next-generation devices and systems require the development and integration of advanced materials, the realization of which inevitably requires two separate processes: property engineering and patterning. Here, we report a one-step, ink-lithography technique to pattern and engineer the properties of thin films of colloidal nanocrystals that exploits their chemically addressable surface. Colloidal nanocrystals are deposited by solution-based methods to form thin films and a local chemical treatment is applied using an ink-printing technique to simultaneously modify (i) the chemical nature of the nanocrystal surface to allow thin-film patterning and (ii) the physical electronic, optical, thermal, and mechanical properties of the nanocrystal thin films. The ink-lithography technique is applied to the library of colloidal nanocrystals to engineer thin films of metals, semiconductors, and insulators on both rigid and flexible substrates and demonstrate their application in high-resolution image replications, anticounterfeit devices, multicolor filters, thin-film transistors and circuits, photoconductors, and wearable multisensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA