Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Chemistry ; 29(46): e202301246, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191067

RESUMO

In coordination chemistry and materials science, terpyridine ligands are of great interest, due to their ability to form stable complexes with a broad range of transition metal ions. We report three terpyridine ligands containing different perfluorocarbon (PFC) tails on the backbone and the corresponding FeII and CoII complexes. The CoII complexes display spin crossover close to ambient temperature, and the nature of this spin transition is influenced by the length of the PFC tail on the ligand backbone. The electrochemical properties of the metal complexes were investigated with cyclic voltammetry revealing one oxidation and several reduction processes. The fluorine-specific interactions were investigated by EPR measurements. Analysis of the EPR spectra of the complexes as microcrystalline powders and in solution reveals exchange-narrowed spectra without resolved hyperfine splittings arising from the 59 Co nucleus; this suggests complex aggregation in solution mediated by interactions of the PFC tails. Interestingly, addition of perfluoro-octanol in different ratios to the acetonitrile solution of the sample resulted in the disruption of the F ⋯ ${\cdots }$ F interactions of the tails. To the best of our knowledge, this is the first investigation of fluorine-specific interactions in metal complexes through EPR spectroscopy, as exemplified by exchange narrowing.

2.
ChemSusChem ; 16(1): e202201146, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36173981

RESUMO

A bimetallic triply fused copper(II) porphyrin complex (1) was prepared, comprising two monomeric porphyrin units linked through ß-ß, meso-meso, ß'-ß' triple covalent linkages and exhibiting remarkable catalytic activity for the electrochemical hydrogen evolution reaction in comparison to the analogous monomeric copper(II) porphyrin complex (2). Electrochemical investigations in the presence of a proton source (trifluoroacetic acid) confirmed that the catalytic activity of the fused metalloporphyrin occurred at a significantly lower overpotential (≈320 mV) compared to the non-fused monomer. Controlled potential electrolysis combined with kinetic analysis of catalysts 1 and 2 confirmed production of hydrogen, with 96 and 71 % faradaic efficiencies and turnover numbers of 102 and 18, respectively, with an observed rate constant of around 107  s-1 for the dicopper complex. The results thus firmly establish triply fused porphyrin ligands as outstanding candidates for generating highly stable and efficient molecular electrocatalysts in combination with earth-abundant 3d transition metals.


Assuntos
Metaloporfirinas , Porfirinas , Porfirinas/química , Cobre/química , Hidrogênio , Cinética , Metaloporfirinas/química
3.
Dalton Trans ; 51(27): 10507-10517, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35766191

RESUMO

Control of the spin state of metal complexes is important because it leads to a precise control over the physical properties and the chemical reactivity of the metal complexes. Currently, controlling the spin state in metal complexes is challenging because a precise control of the properties of the secondary coordination sphere is often difficult. It has been shown that non-covalent interactions in the secondary coordination sphere of transition metal complexes can enable spin state control. Here we exploit this strategy for fluorinated triazole ligands and present mononuclear CoII and FeII complexes with "click"-derived tripodal ligands that contain mono-fluorinated benzyl substituents on the backbone. Structural characterization of 1 and 2 at 100 K revealed Co-N bond lengths that are typical of high spin (HS) CoII complexes. In contrast, the Fe-N bond lengths for 3 are characteristic of a low spin (LS) FeII state. All complexes show an intramolecular face-to-face non-covalent interaction between two arms of the ligand. The influence of the substituents and of their geometric structure on the spin state of the metal center was investigated through SQUID magnetometry, which revealed spin crossover occurring in compounds 1 and 3. EPR spectroscopy sheds further light on the electronic structures of 1 and 2 in their low- and high-spin states. Quantum-chemical calculations of the fluorobenzene molecule were performed to obtain insight into the influence of fluorine-specific interactions. Interestingly, this work shows that the same fluorinated tripodal ligands induce SCO behavior in both FeII and CoII complexes.

4.
Chem Commun (Camb) ; 58(41): 6096-6099, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35503035

RESUMO

Reaction between a carbazole-based mesoionic carbene ligand and manganese(II) iodide results in the formation of a rare air-stable manganese(IV) complex after aerobic workup. Cyclic voltammetry reveals the complex to be stable in five oxidation states. The electronic structure of all five oxidation states is elucidated chemically, spectroscopically (NMR, high-frequency EPR, UV-Vis, MCD), magnetically, and computationally (DFT, CASSCF).

5.
Angew Chem Int Ed Engl ; 61(25): e202200653, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35286004

RESUMO

We report the synthesis and the reactivity of 1,2,3-triazolin-5-imine type mesoionic imines (MIIs). The MIIs are accessible by a base-mediated cycloaddition between a substituted acetonitrile and an aromatic azide, methylation by established routes and subsequent deprotonation. C=O-stretching frequencies in MII-CO2 and -Rh(CO)2 Cl complexes were used to determine the overall donor strength. The MIIs are stronger donors than the N-heterocyclic imines (NHIs). MIIs are excellent ligands for main group elements and transition metals in which they display substituent-induced fluorine-specific interactions and undergo C-H activation. DFT calculations gave insights into the frontier orbitals of the MIIs. The calculations predict a relatively small HOMO-LUMO gap compared to other related ligands. MIIs are potentially able to act as both π-donor and π-acceptor ligands. This report highlights the potential of MIIs to display exciting properties with a huge potential for future development.

6.
J Org Chem ; 86(18): 12683-12692, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34473501

RESUMO

The systematic combination of N-heterocyclic olefins (NHOs) with fluoroarenes resulted in twisted push-pull alkenes. These alkenes carry electron-donating cyclicdiamino substituents and two electron-withdrawing fluoroaryl substituents in the geminal positions. The synthetic method can be extended to a variety of substituted push-pull alkenes by varying the NHO as well as the fluoroarenes. Solid-state molecular structures of these molecules reveal a notable elongation of the central C-C bond and a twisted geometry in the alkene motif. Absorption properties were investigated with UV-vis spectroscopy. The redox properties of the twisted push-pull alkenes were probed with electrochemistry as well as UV-vis/NIR and EPR spectroelectrochemistry, while the electronic structures were computationally evaluated and validated.

7.
Inorg Chem ; 60(21): 15997-16007, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34450017

RESUMO

The chemical reactivity of NO and its role in several biological processes seem well established. Despite this, the chemical reduction of •NO toward HNO has been historically discarded, mainly because of the negative reduction potential of NO. However, this value and its implications are nowadays under revision. The last reported redox potential, E'(NO,H+/HNO), at micromolar and picomolar concentrations of •NO and HNO, respectively, is between -0.3 and 0 V at pH 7.4. This potential implies that the one-electron-reduction process for NO is feasible under biological conditions and could be promoted by well-known biological reductants with reduction potentials of around -0.3 to -0.5 V. Moreover, the biologically compatible chemical reduction of •NO (nonenzymatic), like direct routes to HNO by alkylamines, aromatic and pseudoaromatic alcohols, thiols, and hydrogen sulfide, has been extensively explored by our group during the past decade. The aim of this work is to use a kinetic modeling approach to analyze electrochemical HNO measurements and to report for the first-time direct reaction rate constants between •NO and moderate reducing agents, producing HNO. These values are between 5 and 30 times higher than the previously reported keff values. On the other hand, we also showed that reaction through successive attack by two NO molecules to biologically compatible compounds could produce HNO. After over 3 decades of intense research, the •NO chemistry is still there, ready to be discovered.


Assuntos
Sulfeto de Hidrogênio
8.
Chemistry ; 27(21): 6557-6568, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33502818

RESUMO

Carbene-based radicals are important for both fundamental and applied chemical research. Herein, extensive electrochemical investigations of nine different 1,2,3-triazolylidene selenium adducts are reported. It is found that the half-wave potentials of the first reduction of the selones correlate with their calculated LUMO levels and the LUMO levels of the corresponding triazolylidene-based mesoionic carbenes (MICs). Furthermore, unexpected quasi-reversibility of the reduction of two triazoline selones, exhibiting comparable reduction potentials, was discovered. Through UV/Vis/NIR and EPR spectroelectrochemical investigations supported by DFT calculations, the radical anion was unambiguously assigned to be triazoline centered. This electrochemical behavior was transferred to a triazolylidene-type MIC-gold phenyl complex resulting in a MIC-radical coordinated AuI species. Apart from UV-Vis-NIR and EPR spectroelectrochemical investigations of the reduction, the reduced gold-coordinated MIC radical complex was also formed in situ in the bulk through chemical reduction. This is the first report of a monodentate triazolylidene-based MIC ligand that can be reduced to its anion radical in a metal complex. The results presented here provide design principles for stabilizing radicals based on MICs.

9.
Dalton Trans ; 50(3): 1106-1118, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367443

RESUMO

α-Diketones are an important class of building blocks employed in many organic synthetic reactions. However, their coordination chemistry has rarely been explored. In light of this, our earlier report on [(acac)2RuII(µ-2,2'-pyridil)RuII(acac)2] (acac = acetylacetonate) showcased the sensitivity of a diketone fragment towards oxidative C-C cleavage. Following the lead, the synthesis of similar but stable diketo fragments containing diruthenium compounds was attempted. Three diruthenium compounds with the bridge 1,2-bis(2-hydroxyphenyl)ethane-1,2-dione (L) were prepared: diastereomeric [(acac)2RuIII(µ-L2-)RuIII(acac)2], 1a(rac)/1b(meso), [(bpy)2RuII(µ-L2-)RuII(bpy)2](ClO4)2, [2](ClO4)2 and [(pap)2RuII(µ-L2-)RuII(pap)2](ClO4)2, [3](ClO4)2 with ancillary ligands of different donating/accepting characteristics. The metal is stabilised in different oxidation states in these complexes: Ru(iii) is preferred in 1a/1b when σ-donating acac is used as the co-ligand whereas electron rich Ru(ii) is preferred in [2](ClO4)2 and [3](ClO4)2 when co-ligands of moderate to strong π-accepting properties are employed. The oxidative chemistry of these systems is of particular interest with respect to the participation of varying bridging-ligands which contain phenoxide groups. On the other hand, the reduction processes primarily resulting from the metal or the ancillary ligands are noteworthy as the normally reducible 1,2-diketo- group remains unreduced. These results have been rationalised and outlined from thorough experimental and theoretical investigations. The results presented here shed light on the stability of metal coordinated α-diketones as a function of their substituents.

10.
Angew Chem Int Ed Engl ; 60(1): 499-506, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33080102

RESUMO

We present herein anionic borate-based bi-mesoionic carbene compounds of the 1,2,3-triazol-4-ylidene type that undergo C-N isomerization reactions. The isomerized compounds are excellent ligands for CoII  centers. Strong agostic interactions with the "C-H"-groups of the cyclohexyl substituents result in an unusual low-spin square planar CoII  complex, which is unreactive towards external substrates. Such agostic interactions are absent in the complex with phenyl substituents on the borate backbone. This complex displays a high-spin tetrahedral CoII  center, which is reactive towards external substrates including dioxygen. To the best of our knowledge, this is also the first investigation of agostic interactions through single-crystal EPR spectroscopy. We conclusively show here that the structure and properties of these CoII complexes can be strongly influenced through interactions in the secondary coordination sphere. Additionally, we unravel a unique ligand rearrangement for these classes of anionic mesoionic carbene-based ligands.

11.
Inorg Chem ; 59(22): 16622-16634, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33153263

RESUMO

Two Co(III) complexes (1Py2 and 2Py2) of new corrole ligands H3L1 (5,15-bis(p-methylcarboxyphenyl)-10-(o-methylcarboxyphenyl)corrole) and H3L2 (5,15-bis(p-nitrophenyl)-10-(o-methylcarboxyphenyl)corrole) with two apical pyridine ligands have been synthesized and thoroughly characterized by cyclic voltammetry, UV-vis-NIR, and EPR spectroscopy, spectroelectrochemistry, single-crystal X-ray diffraction studies, and DFT methods. Complexes 1Py2 and 2Py2 possess much lower oxidation potentials than cobalt(III)-tris-pentafluorophenylcorrole (Co(tpfc)) and similar corroles containing pentafluorophenyl (C6F5) substituents, thus allowing access to high oxidation states of the former metallocorroles using mild chemical oxidants. The spectroscopic (UV-vis-NIR and EPR) and electronic properties of several oxidation states of these complexes have been determined by a combination of the mentioned methods. Complexes 1Py2 and 2Py2 undergo three oxidations within 1.3 V vs FcH+/FcH in MeCN, and we show that both complexes catalyze water oxidation in an MeCN/H2O mixture upon the third oxidation, with kobs (TOF) values of 1.86 s-1 at 1.29 V (1Py2) and 1.67 s-1 at 1.37 V (2Py2). These values are five times higher than previously reported TOF values for C6F5-substituted cobalt(III) corroles, a finding we ascribe to the additional charge in the corrole macrocycle due to the increased oxidation state. This work opens up new possibilities in the study of metallocorrole water oxidation catalysts, particularly by allowing spectroscopic probing of high-oxidation states and showing strong substituent-effects on catalytic activity of the corrole complexes.

12.
Inorg Chem ; 59(20): 15504-15513, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33021374

RESUMO

This work reports on the synthesis and in-depth electrochemical and photochemical characterization of two chromium(0) and molydenum(0) metal complexes with bidentate pyridyl-mesoionic carbene (MIC) ligands of the 1,2,3-triazol-5-ylidene type and carbonyl coligands. Metal complexes with MIC ligands have turned out to have very promising electrocatalytic and photochemical properties, but examples of MIC-containing complexes with early-transition-metal centers remain extremely rare. The electrochemistry of these new MIC complexes was studied by cyclic voltammetry and especially spectroelectrochemistry in the IR region consistent with a mainly metal-centered oxidation, which is fully reversible in the case of the chromium(0) complex. At the same time, the two reduction steps are predominantly ligand-centered according to the observed near-IR absorbance, with the first reduction step being reversible for both systems. The results of the electron paramagnetic resonance studies on the oxidized and reduced species confirm the IR spectroelectrochemistry experiments. The photochemical reactivity of the complexes with a series of organic ligands was investigated by time-resolved (step-scan) Fourier transform infrared (FTIR) spectroscopy. Interestingly, the photoreactions in pyridine and acetonitrile are fully reversible with a slow dark reverse reaction back to the educt species over minutes and even hours, depending on the metal center and reagent. This reversible behavior is in contrast to the expected loss of one or several CO ligands known from related homoleptic as well as heteroleptic M(CO)4L2 α-diimine transition-metal complexes.

13.
Chem Commun (Camb) ; 56(59): 8233-8236, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32558832

RESUMO

The coulombic repulsion between two adjacent cation centres of 1,2-carbodications is known to decrease with π- and/or n-donor substituents by a positive charge delocalization. Here we report the delocalization of the positive charge of transient 1,2-carbodications having one H-substituent by an intramolecular base-coordination. N-heterocyclic olefin (NHO) derived 2-pyrrolidinyl appended trisubstituted geminal diazaalkenes were used for the generation of transient 1,2-carbodications through a 2-e chemical oxidation process. We have also studied the 1-e oxidation reaction of trisubstituted geminal diazaalkenes (electrochemically and chemically) and also studied them using in situ EPR spectroscopy.

14.
Chemistry ; 26(27): 5951-5955, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32027063

RESUMO

A N-heterocyclic olefin (NHO), a terminal alkene selectively activates aromatic C-F bonds without the need of any additional catalyst. As a result, a straightforward methodology was developed for the formation of different fluoroaryl-substituted alkenes in which the central carbon-carbon double bond is in a twisted geometry.

15.
Chemistry ; 26(19): 4425-4431, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31994763

RESUMO

This work presents a stepwise reversible two-electron transfer induced hydrogen shift leading to the conversion of a bis-pyrrolinium cation to an E-diaminoalkene and vice versa. Remarkably, the forward and the reverse reaction, which are both reversible, follow two completely different reaction pathways. Establishing such unprecedented property in this type of processes was possible by developing a novel synthetic route towards the starting dication. All intermediates involved in both the forward and the backward reactions were comprehensively characterized by a combination of spectroscopic, crystallographic, electrochemical, spectroelectrochemical, and theoretical methods. The presented synthetic route opens up new possibilities for the generation of multi-pyrrolinium cation scaffold-based organic redox systems, which constitute decidedly sought-after molecules in contemporary chemistry.

16.
Angew Chem Int Ed Engl ; 59(17): 6729-6734, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31960562

RESUMO

Diradicals have been of tremendous interest for over a century ever since the first reports of p- and m-phenylene-bridged diphenylmethylradicals in 1904 by Thiele and 1915 by Schlenk. Reported here are the first examples of cyclic(alkyl)(amino)carbene (CAAC) analogues of Thiele's hydrocarbon, a Kekulé diradical, and Schlenk's hydrocarbon, a non-Kekulé diradical, without using CAAC as a precursor. The CAAC analogue of Thiele's hydrocarbon has a singlet ground state, whereas the CAAC analogue of Schlenk's hydrocarbon contains two unpaired electrons. The latter forms a dimer, by an intermolecular double head-to-tail dimerization. This straightforward synthetic methodology is modular and can be extended for the generation of redox-active organic compounds.

17.
Inorg Chem ; 58(6): 3754-3763, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30802046

RESUMO

The copper-quinone interaction plays important roles in diverse fields such as biochemistry, catalysis, and optically/magnetically switchable materials. Despite this fact, the isolation and thorough characterization of copper(I)-quinone complexes remains a highly challenging task owing to their intrinsic instability. We herein present systems where the stability imparted by the extended π-system of a pyrene ring is used to synthesize, isolate, and crystallographically characterize the first example of a dinuclear metal complex that is bridged by a completely unreduced "di- o-quinone"-type ligand. Additionally, we present the monocopper counterpart with the o-quinone-pyrene type of ligand. The copper complexes are redox-rich and display intriguing electrochemical, optical, and electron paramagnetic resonance (EPR) spectroscopic properties. The line-rich EPR spectra of the one-electron reduced copper(I) complexes were simulated and analyzed via density functional theory calculations. The results presented here establish π-π stacking as a viable alternative to stabilize otherwise unstable redox-active compounds with possible consequences for sensing and redox catalysis.

18.
J Phys Chem A ; 122(1): 234-238, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29235864

RESUMO

Analytic and numeric derivations are made of the effective exchange and dipolar magnetic interactions between spin pairs containing S = 3/2 ions, such as high-spin Co(II), S = 5/2 ions, such as high-spin Fe(III) ions, experiencing zero-field splittings much larger than the interion interactions, or J = 15/2 ions such as Dy(III) with crystal-field splittings much larger than the interion interaction. These formulas allow for a simpler analysis of the magnetic properties of dimers containing high-spin ions.

19.
Inorg Chem ; 54(19): 9342-50, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26284848

RESUMO

The reduction of NO(•) to HNO/NO(-) under biologically compatible conditions has always been thought as unlikely, mostly because of the negative reduction potential: E°(NO(•),H(+)/HNO) = -0.55 V vs NHE at physiological pH. Nonetheless, during the past decade, several works hinted at the possible NO-to-HNO conversion mediated by moderate biological reductants. Very recently, we have shown that the reaction of NO(•) with ascorbate and aromatic alcohols occurs through a proton-coupled nucleophilic attack (PCNA) of the alcohol to NO(•), yielding an intermediate RO-N(H)O(•) species, which further decomposes to release HNO. For the present work, we decided to inspect whether other common biological aromatic alcohols obtained from foods, such as Vitamin E, or used as over-the-counter drugs, like aspirin, are able to undergo the reaction. The positive results suggest that the conversion of NO to HNO could occur far more commonly than previously expected. Taking these as the starting point, we set to review our and other groups' previous reports on the possible NO-to-HNO conversion mediated by biological compounds including phenolic drugs and vitamins, as well as several thiol-bearing compounds. Analysis of revised data prompted us to ask ourselves the following key questions: What are the most likely physio/pathological conditions for NO(•)-to-HNO conversion to take place? Which effects usually attributed to NO(•) are indeed mediated by HNO? These inquiries are discussed in the context of 2 decades of NO and HNO research.


Assuntos
Aspirina/química , Óxidos de Nitrogênio/química , Fenóis/química , Vitamina E/química , Radicais Livres/química , Estrutura Molecular
20.
J Am Chem Soc ; 137(14): 4720-7, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25773518

RESUMO

The role of NO in biology is well established. However, an increasing body of evidence suggests that azanone (HNO), could also be involved in biological processes, some of which are attributed to NO. In this context, one of the most important and yet unanswered questions is whether and how HNO is produced in vivo. A possible route concerns the chemical or enzymatic reduction of NO. In the present work, we have taken advantage of a selective HNO sensing method, to show that NO is reduced to HNO by biologically relevant alcohols with moderate reducing capacity, such as ascorbate or tyrosine. The proposed mechanism involves a nucleophilic attack to NO by the alcohol, coupled to a proton transfer (PCNA: proton-coupled nucleophilic attack) and a subsequent decomposition of the so-produced radical to yield HNO and an alkoxyl radical.


Assuntos
Álcoois/química , Ácido Ascórbico/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Tirosina/química , Álcoois/metabolismo , Animais , Ácido Ascórbico/metabolismo , Bovinos , Células Endoteliais/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , Oxirredução , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA