Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Front Psychiatry ; 15: 1293514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832325

RESUMO

Recent resilience research has increasingly emphasized the importance of focusing on investigating the protective factors in mentally healthy populations, complementing the traditional focus on psychopathology. Social support has emerged as a crucial element within the complex interplay of individual and socio-environmental factors that shape resilience. However, the neural underpinnings of the relationship between social support and resilience, particularly in healthy subjects, remain largely unexplored. With advances in neuroimaging techniques, such as ultra-high field MRI at 7T and beyond, researchers can more effectively investigate the neural mechanisms underlying these factors. Thus, our study employed ultra-high field rs-fMRI to explore how social support moderates the relationship between psychological resilience and functional connectivity in a healthy cohort. We hypothesized that enhanced social support would amplify resilience-associated connectivity within neural circuits essential for emotional regulation, cognitive processing, and adaptive problem-solving, signifying a synergistic interaction where strong social networks bolster the neural underpinnings of resilience. (n = 30). Through seed-based functional connectivity analyses and interaction analysis, we aimed to uncover the neural correlates at the interplay of social support and resilience. Our findings indicate that perceived social support significantly (p<0.001) alters functional connectivity in the right and left FP, PCC, and left hippocampus, affirming the pivotal roles of these regions in the brain's resilience network. Moreover, we identified significant moderation effects of social support across various brain regions, each showing unique connectivity patterns. Specifically, the right FP demonstrated a significant interaction effect where high social support levels were linked to increased connectivity with regions involved in socio-cognitive processing, while low social support showed opposite effects. Similar patterns by social support levels were observed in the left FP, with connectivity changes in clusters associated with emotional regulation and cognitive functions. The PCC's connectivity was distinctly influenced by support levels, elucidating its role in emotional and social cognition. Interestingly, the connectivity of the left hippocampus was not significantly impacted by social support levels, indicating a unique pattern within this region. These insights highlight the importance of high social support levels in enhancing the neural foundations of resilience and fostering adaptive neurological responses to environmental challenges.

2.
eNeuro ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744491

RESUMO

Tic disorders (TD) are characterized by the presence of motor and/or vocal tics. Common neurophysiological frameworks suggest dysregulations of the cortico-striatal-thalamo-cortical (CSTC) brain circuit that controls movement execution. Besides the common tics, there are other "non-tic" symptoms that are primarily related to sensory perception, sensorimotor integration, attention, and social cognition. The existence of these symptoms, the sensory tic triggers and the modifying effect of attention and cognitive control mechanisms on tics may indicate the salience network's involvement in the neurophysiology of TD. Resting-state functional MRI measurements were performed in 26 participants with TD and 25 healthy controls. The group differences in resting-state functional connectivity patterns were measured based on seed-to-voxel connectivity analyses. Compared to healthy controls, patients with TD exhibited altered connectivity between the core regions of the salience network (insula, ACC and TPJ) and sensory, associative, and motor-related cortices. Furthermore, connectivity changes were observed in relation to the severity of tics in the TD group. The salience network, particularly the insula, is likely to be an important site of dysregulation in TD. Our results provide evidence for large-scale neural deviations in TD beyond the CSTC pathologies. These findings may be relevant for developing treatment targets.Significance statement Tic disorders (TD) are associated with a variety of symptoms beyond typical motor and vocal tics that affect sensory perception, attention, and social cognition. The presence of such non-tic symptoms suggests the potential involvement of the salience network in the pathophysiology of TD. While previous studies have predominantly focused on the cortico-striato-thalamo-cortical (CSTC) circuitry, which is known to underlie tic generation and expression, we conducted resting-state fMRI to investigate the functional connectivity of the salience network in TD. Notably, we observed impaired connectivity of the salience network with relations to the tic symptom severity. Our research provided important evidence that the pathophysiology of TD involves the salience network, which is highly relevant for developing treatment strategies.

3.
Brain Sci ; 14(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38790472

RESUMO

Diffusion tensor imaging (DTI) enables the assessment of changes in brain tissue microstructure during maturation and ageing. In general, patterns of cerebral maturation and decline render non-monotonic lifespan trajectories of DTI metrics with age, and, importantly, the rate of microstructural changes is heterochronous for various white matter fibres. Recent studies have demonstrated that diffusion kurtosis imaging (DKI) metrics are more sensitive to microstructural changes during ageing compared to those of DTI. In a previous work, we demonstrated that the Cohen's d of mean diffusional kurtosis (dMK) represents a useful biomarker for quantifying maturation heterochronicity. However, some inferences on the maturation grades of different fibre types, such as association, projection, and commissural, were of a preliminary nature due to the insufficient number of fibres considered. Hence, the purpose of this follow-up work was to further explore the heterochronicity of microstructural maturation between pre-adolescence and middle adulthood based on DTI and DKI metrics. Using the effect size of the between-group parametric changes and Cohen's d, we observed that all commissural fibres achieved the highest level of maturity, followed by the majority of projection fibres, while the majority of association fibres were the least matured. We also demonstrated that dMK strongly correlates with the maxima or minima of the lifespan curves of DTI metrics. Furthermore, our results provide substantial evidence for the existence of spatial gradients in the timing of white matter maturation. In conclusion, our data suggest that DKI provides useful biomarkers for the investigation of maturation spatial heterogeneity and heterochronicity.

4.
PLoS One ; 19(4): e0296357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578749

RESUMO

OBJECTIVE: Quantitative values derived from PET brain images are of high interest for neuroscientific applications. Insufficient DT correction (DTC) can lead to a systematic bias of the output parameters obtained by a detailed analysis of the time activity curves (TACs). The DTC method currently used for the Siemens 3T MR BrainPET insert is global, i.e., differences in DT losses between detector blocks are not considered, leading to inaccurate DTC and, consequently, to inaccurate measurements masked by a bias. However, following careful evaluation with phantom measurements, a new block-pairwise DTC method has demonstrated a higher degree of accuracy compared to the global DTC method. APPROACH: Differences between the global and the block-pairwise DTC method were studied in this work by applying several radioactive tracers. We evaluated the impact on [11C]ABP688, O-(2-[18F]fluoroethyl)-L-tyrosine (FET), and [15O]H2O TACs. RESULTS: For [11C]ABP688, a relevant bias of between -0.0034 and -0.0053 ml/ (cm3 • min) was found in all studied brain regions for the volume of distribution (VT) when using the current global DTC method. For [18F]FET-PET, differences of up to 10% were observed in the tumor-to-brain ratio (TBRmax), these differences depend on the radial distance of the maximum from the PET isocenter. For [15O]H2O, differences between +4% and -7% were observed in the GM region. Average biases of -4.58%, -3.2%, and -1.2% for the regional cerebral blood flow (CBF (K1)), the rate constant k2, and the volume of distribution VT were observed, respectively. Conversely, in the white matter region, average biases of -4.9%, -7.0%, and 3.8% were observed for CBF (K1), k2, and VT, respectively. CONCLUSION: The bias introduced by the global DTC method leads to an overestimation in the studied quantitative parameters for all applications compared to the block-pairwise method. SIGNIFICANCE: The observed differences between the two DTC methods are particularly relevant for research applications in neuroscientific studies as they affect the accuracy of quantitative Brain PET images.


Assuntos
Encéfalo , Oximas , Tomografia por Emissão de Pósitrons , Piridinas , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Imagens de Fantasmas , Cabeça , Imageamento por Ressonância Magnética
5.
Epilepsia ; 65(4): 974-983, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289522

RESUMO

OBJECTIVE: Electroencephalography (EEG) microstate analysis seeks to cluster the scalp's electric field into semistable topographical EEG activity maps at different time points. Our study aimed to investigate the features of EEG microstates in subjects with focal epilepsy and psychogenic nonepileptic seizures (PNES). METHODS: We included 62 adult subjects with focal epilepsy or PNES who received video-EEG monitoring at the epilepsy monitoring unit. The subjects (mean age = 42.8 ± 21.2 years) were distributed equally between epilepsy and PNES groups. We extracted microstates from a 4.4 ± 1.0-min, 21-channel resting-state EEG. We excluded subjects with interictal epileptiform discharges during resting-state EEGs. After preprocessing, we derived five main EEG microstates-MS1 to MS5-for the full frequency band (1-30 Hz) and frequency subbands (delta, 1-4 Hz; theta, 4-8 Hz; alpha, 8-12 Hz; beta, 12-30 Hz), using the MATLAB-based EEGLAB toolkit. Statistical features of microstates (duration, occurrence, contribution, global field power [GFP]) were compared between the groups, using logistic regression corrected for age and sex. RESULTS: We detected no differences in microstate parameters in the full frequency band. We found a longer duration (delta: B = -7.680, p = .046; theta: B = -16.200, p = .043) and a higher contribution (delta: B = -7.414, p = .035; theta: B = -7.509, p = .031) of MS4 in lower frequency bands in the epilepsy group. The PNES group showed a higher occurrence of MS5 in the delta subband (B = 3.283, p = .032). In the theta subband, a higher GFP of MS1 was associated with the PNES group (B = 5.674, p = .025), whereas a higher GFP of MS2 was associated with the epilepsy group (B = -6.579, p = .026). SIGNIFICANCE: Microstate features show differences between patients with focal epilepsy and PNES. EEG microstates could be a promising parameter, helping to understand changes in brain dynamics in subjects with epilepsy, and should be explored as a potential biomarker.


Assuntos
Epilepsias Parciais , Epilepsia , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Convulsões/epidemiologia , Convulsões Psicogênicas não Epilépticas , Epilepsia/epidemiologia , Epilepsias Parciais/diagnóstico , Eletroencefalografia
6.
Front Neurosci ; 17: 1172549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027493

RESUMO

The cognitive impact of psychological trauma can manifest as a range of post-traumatic stress symptoms that are often attributed to impairments in learning from positive and negative outcomes, aka reinforcement learning. Research on the impact of trauma on reinforcement learning has mainly been inconclusive. This study aimed to circumscribe the impact of psychological trauma on reinforcement learning in the context of neural response in time and frequency domains. Two groups of participants were tested - those who had experienced psychological trauma and a control group who had not - while they performed a probabilistic classification task that dissociates learning from positive and negative feedback during a magnetoencephalography (MEG) examination. While the exposure to trauma did not exhibit any effects on learning accuracy or response time for positive or negative feedback, MEG cortical activity was modulated in response to positive feedback. In particular, the medial and lateral orbitofrontal cortices (mOFC and lOFC) exhibited increased activity, while the insular and supramarginal cortices showed decreased activity during positive feedback presentation. Furthermore, when receiving negative feedback, the trauma group displayed higher activity in the medial portion of the superior frontal cortex. The timing of these activity changes occurred between 160 and 600 ms post feedback presentation. Analysis of the time-frequency domain revealed heightened activity in theta and alpha frequency bands (4-10 Hz) in the lOFC in the trauma group. Moreover, dividing the two groups according to their learning performance, the activity for the non-learner subgroup was found to be lower in lOFC and higher in the supramarginal cortex. These differences were found in the trauma group only. The results highlight the localization and neural dynamics of feedback processing that could be affected by exposure to psychological trauma. This approach and associated findings provide a novel framework for understanding the cognitive correlates of psychological trauma in relation to neural dynamics in the space, time, and frequency domains. Subsequent work will focus on the stratification of cognitive and neural correlates as a function of various symptoms of psychological trauma. Clinically, the study findings and approach open the possibility for neuromodulation interventions that synchronize cognitive and psychological constructs for individualized treatment.

7.
Front Neurosci ; 17: 1229371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799343

RESUMO

Neural fingerprinting is the identification of individuals in a cohort based on neuroimaging recordings of brain activity. In magneto- and electroencephalography (M/EEG), it is common practice to use second-order statistical measures, such as correlation or connectivity matrices, when neural fingerprinting is performed. These measures or features typically require coupling between signal channels and often ignore the individual temporal dynamics. In this study, we show that, following recent advances in multivariate time series classification, such as the development of the RandOm Convolutional KErnel Transformation (ROCKET) classifier, it is possible to perform classification directly on short time segments from MEG resting-state recordings with remarkably high classification accuracies. In a cohort of 124 subjects, it was possible to assign windows of time series of 1 s in duration to the correct subject with above 99% accuracy. The achieved accuracies are vastly superior to those of previous methods while simultaneously requiring considerably shorter time segments.

8.
Hum Brain Mapp ; 44(11): 4225-4238, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37232486

RESUMO

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and phonic tics, which several different theories, such as basal ganglia-thalamo-cortical loop dysfunction and amygdala hypersensitivity, have sought to explain. Previous research has shown dynamic changes in the brain prior to tic onset leading to tics, and this study aims to investigate the contribution of network dynamics to them. For this, we have employed three methods of functional connectivity to resting-state fMRI data - namely the static, the sliding window dynamic and the ICA based estimated dynamic; followed by an examination of the static and dynamic network topological properties. A leave-one-out (LOO-) validated regression model with LASSO regularization was used to identify the key predictors. The relevant predictors pointed to dysfunction of the primary motor cortex, the prefrontal-basal ganglia loop and amygdala-mediated visual social processing network. This is in line with a recently proposed social decision-making dysfunction hypothesis, opening new horizons in understanding tic pathophysiology.


Assuntos
Tiques , Síndrome de Tourette , Humanos , Tiques/diagnóstico por imagem , Síndrome de Tourette/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Gânglios da Base
9.
Basic Clin Pharmacol Toxicol ; 133(1): 73-81, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37069136

RESUMO

OBJECTIVE: We aimed to unravel potential pharmacokinetic interactions between aripiprazole and duloxetine. METHODS: Plasma concentrations of aripiprazole in two groups of 78 patients each, receiving aripiprazole as a monotherapy or combined with duloxetine, were compared. A potential impact of duloxetine on the metabolism of aripiprazole was expected in higher plasma concentrations of aripiprazole and higher dose-adjusted plasma concentrations. RESULTS: Patients co-medicated with duloxetine showed significantly higher plasma concentrations of aripiprazole by 54.2% (p = 0.019). Dose-adjusted plasma concentrations were 45.6% higher (p = 0.001); 12.8% of these patients exhibited aripiprazole plasma concentrations above the upper limit of the therapeutic reference range, in the control group this was only the case for 10.3% of the patients. A positive relationship was found between the daily dose of duloxetine and dose-adjusted plasma concentrations of aripiprazole (p = 0.034). As dehydroaripiprazole concentrations were not available, conclusions for the active moiety (aripiprazole plus dehydroaripiprazole) could not be drawn. CONCLUSIONS: Combining duloxetine and aripiprazole leads to significantly higher drug concentrations of aripiprazole, most likely via an inhibition of cytochrome P450 CYP2D6 and to a lesser extent of CYP3A4 by duloxetine. Clinicians have to consider increasing aripiprazole concentrations when adding duloxetine to a treatment regimen with aripiprazole.


Assuntos
Antipsicóticos , Quinolonas , Humanos , Aripiprazol , Cloridrato de Duloxetina/uso terapêutico , Antipsicóticos/farmacologia , Piperazinas/farmacocinética , Quinolonas/farmacocinética , Citocromo P-450 CYP2D6/metabolismo
10.
Psychiatry Res ; 323: 115135, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878177

RESUMO

Preliminary data suggest that cannabis-based medicines might be a promising new treatment for patients with Tourette syndrome (TS)/chronic tic disorders (CTD) resulting in an improvement of tics, comorbidities, and quality of life. This randomized, multicenter, placebo-controlled, phase IIIb study aimed to examine efficacy and safety of the cannabis extract nabiximols in adults with TS/CTD (n = 97, randomized 2:1 to nabiximols:placebo). The primary efficacy endpoint was defined as a tic reduction of ≥ 25% according to the Total Tic Score of the Yale Global Tic Severity Scale after 13 weeks of treatment. Although a much larger number of patients in the nabiximols compared to the placebo group (14/64 (21·9%) vs. 3/33 (9·1%)) met the responder criterion, superiority of nabiximols could formally not be demonstrated. In secondary analyses, substantial trends for improvements of tics, depression, and quality of life were observed. Additionally exploratory subgroup analyses revealed an improvement of tics in particular in males, patients with more severe tics, and patients with comorbid attention deficit/hyperactivity disorder suggesting that these subgroups may benefit better from treatment with cannabis-based medication. There were no relevant safety issues. Our data further support the role of cannabinoids in the treatment of patients with chronic tic disorders.


Assuntos
Transtornos de Tique , Tiques , Síndrome de Tourette , Masculino , Humanos , Adulto , Qualidade de Vida , Estudos Prospectivos , Transtornos de Tique/tratamento farmacológico , Síndrome de Tourette/tratamento farmacológico , Método Duplo-Cego
11.
EJNMMI Res ; 13(1): 11, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757553

RESUMO

BACKGROUND: For positron emission tomography (PET) ligands, such as [11C]ABP688, to be able to provide more evidence about the glutamatergic hypothesis in schizophrenia (SZ), quantification bias during dynamic PET studies and its propagation into the estimated values of non-displaceable binding potential (BPND) must be addressed. This would enable more accurate quantification during bolus + infusion (BI) neuroreceptor studies and further our understanding of neurological diseases. Previous studies have shown BPND-related biases can often occur due to overestimated cerebellum activity (reference region). This work investigates whether an alternative framing scheme can minimize quantification biases propagated into BPND, whether confounders, such as smoking status, need to be controlled for during the study, and what the consequences for the data interpretation following analysis are. A group of healthy controls (HC) and a group of SZ patients (balanced and unbalanced number of smokers) were investigated with [11C]ABP688 and a BI protocol. Possible differences in BPND quantification as a function of smoking status were tested with constant 5 min ('Const 5 min') and constant true counts ('Const Trues') framing schemes. In order to find biomarkers for SZ, the differences in smoking effects were compared between groups. The normalized BPND and the balanced number of smokers and non-smokers for both framing schemes were evaluated. RESULTS: When applying F-tests to the 'Const 5 min' framing scheme, effect sizes (η2p) and brain regions which showed significant effects fluctuated considerably with F = 50.106 ± 54.948 (9.389 to 112.607), P-values 0.005 to < 0.001 and η2p = 0.514 ± 0.282 (0.238 to 0.801). Conversely, when the 'Const Trues' framing scheme was applied, the results showed much smaller fluctuations with F = 78.038 ± 8.975 (86.450 to 68.590), P < 0.001 for all conditions and η2p = 0.730 ± 0.017 (0.742 to 0.710), and regions with significant effects were more robustly reproduced. Further, differences, which would indicate false positive identifications between HC and SZ groups in five brain regions when using the 'Const 5 min' framing scheme, were not observed with the 'Const Trues' framing. CONCLUSIONS: Based on an [11C]ABP688 PET study in SZ patients, the results show that non-consistent BPND outcomes can be propagated by the framing scheme and that potential bias can be minimized using 'Const Trues' framing.

12.
Neuroimage Clin ; 36: 103249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451355

RESUMO

INTRODUCTION: The insular cortex is part of a network of highly connected cerebral "rich club" - regions and has been implicated in the pathophysiology of various psychiatric and neurological disorders, of which major depressive disease is one of the most prevalent. "Rich club" vulnerability can be a contributing factor in disease development. High-resolution structural subfield analysis of insular volume in combination with cortical thickness measurements and psychological testing might elucidate the way in which the insula is changed in depression. MATERIAL AND METHODS: High-resolution structural images of the brain were acquired using a 7T-MRI scanner. The mean grey matter volume and cortical thickness within the insular subfields were analysed using voxel-based morphometry (VBM) and surface analysis techniques respectively. Insular subfields were defined according to the Brainnetome Atlas for VBM - and the Destrieux-Atlas for cortical thickness - analysis. Thirty-three patients with confirmed major depressive disease, as well as thirty-one healthy controls matched for age and gender, were measured. The severity of depression in MDD patients was measured via a BDI-II score and objective clinical assessment (AMDP). Intergroup statistical analysis was performed using ANCOVA. An intragroup multivariate regression analysis of patient psychological test results was calculated. Corrections for multiple comparisons was performed using FDR. RESULTS: Significant differences between groups were observed in the left granular dorsal insula according to VBM-analysis. AMDP-scores positively correlated with cortical thickness in the right superior segment of the circular insular sulcus. CONCLUSIONS: The combination of differences in grey matter volume between healthy controls and patients with a positive correlation of cortical thickness with disease severity underscores the insula's role in the pathogeneses of MDD. The connectivity hub insular cortex seems vulnerable to disruption in context of affective disease.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Insular , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem
13.
Phys Med Biol ; 67(23)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36356317

RESUMO

'Objective. Dead time correction (DTC) is an important factor in ensuring accurate quantification in PET measurements. This is currently often achieved using a global DTC method, i.e., an average DTC factor is computed. For PET scanners designed to image dedicated organs, e.g., those used in brain imaging or positron emission mammography (PEM), a substantial amount of the administered radioactivity is located outside of the PET field-of-view (FOV). This activity contributes to the dead time (DT) of the scintillation detectors. Moreover, the count rates of the individual scintillation detectors are potentially very inhomogeneous due to the specific irradiation of each detector, especially for combined MR/PET systems, where radiation shields cannot be applied. Approach: We have developed a block-pairwise DTC method for our Siemens 3T MR BrainPET insert by extending a previously published method that uses the delayed random coincidence count rate to estimate the DT in the individual scans and planes (i.e., scintillation pixel rings). The method was validated in decay experiments using phantoms with a homogenous activity concentration and with and without out-of-FOV activity. Based on a three-compartment phantom, we compared the accuracy and noise properties of the block-pairwise DTC and the global DTC method.Main results. The currently used global DTC led to a substantial positive bias in regions with high activity; the block-pairwise DTC resulted in substantially less bias. The noise level for the block-pairwise DTC was comparable to the global DTC and image reconstructions without any DTC. Finally, we tested the block-pairwise DTC with a data set obtained from volunteer measurements using the mGluR5 (metabotropic glutamate receptor subtype 5) antagonist [11C]ABP688. When the relative differences in activity concentrations obtained with global DTC and block-pairwise DTC for the ACC and the cerebellum GM were compared, the ratios differed by a factor of up to 1.4 at the beginning-when the first injection is administered as a bolus with high radioactivity.Significance. In this work, global DTC was shown to have the potential to introduce quantification bias, while better quantitation accuracy was achieved with the presented block-pairwise DTC method. The method can be implemented in all systems that use the delayed window technique and is particulary expected to improve the quantiation accuracy of dedicated brain PET scanners due to their geometry.'


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Humanos , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem
14.
Front Psychiatry ; 13: 958688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072455

RESUMO

Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.

15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 234-237, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086347

RESUMO

Traditionally, the diagnosis of schizophrenia was based on the psychiatrist's introspective diagnosis through clinical stratification factors and score-scales, which led to heterogeneity and discrepancy in the symptoms and results. However, there are many studies trying to improve and assist in how its diagnosis could be performed. To objectively classify schizophrenia patients it is required to determine quantitative biomarkers of the disease. In this contribution we propose a method based on feature extraction both in magnetic resonance (MR) and Positron Emission Tomography (PET) imaging. A dataset of 34 participants (17 patients and 17 control subjects) were analyzed and 5 different brain regions were studied (frontal cortex, posterior cingulate cortex, temporal cortex, primary auditory cortex and thalamus). Following a radiomics approach, 43 texture features were extracted using five different statistical methods. These features were used for the training of the five different predictive models (Linear SVM, Gaussian SVM, Bagged Tree, KNN and Naive Bayes). The precision results were obtained classifying schizophrenia both in MR images (89% Area Under the Curve (AUC) in the posterior cingulate cortex) and with PET images (82% AUC in the frontal cortex), being Linear SVM and Naive Bayes the classification models with the highest predictive power. Clinical Relevance- The current study establishes a methodology to classify schizophrenia disease based on quantitative biomarkers using MR and PET images. This tool could assist the psychiatrist as an additional criterion for the diagnosis evaluation.


Assuntos
Esquizofrenia , Teorema de Bayes , Biomarcadores , Humanos , Espectroscopia de Ressonância Magnética , Tomografia por Emissão de Pósitrons/métodos , Esquizofrenia/diagnóstico por imagem
16.
Front Hum Neurosci ; 16: 933718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092647

RESUMO

Dysregulated frontostriatal circuitries are viewed as a common target for the treatment of aberrant behaviors in various psychiatric and neurological disorders. Accordingly, experimental neurofeedback paradigms have been applied to modify the frontostriatal circuitry. The human frontostriatal circuitry is topographically and functionally organized into the "limbic," the "associative," and the "motor" subsystems underlying a variety of affective, cognitive, and motor functions. We conducted a systematic review of the literature regarding functional magnetic resonance imaging-based neurofeedback studies that targeted brain activations within the frontostriatal circuitry. Seventy-nine published studies were included in our survey. We assessed the efficacy of these studies in terms of imaging findings of neurofeedback intervention as well as behavioral and clinical outcomes. Furthermore, we evaluated whether the neurofeedback targets of the studies could be assigned to the identifiable frontostriatal subsystems. The majority of studies that targeted frontostriatal circuitry functions focused on the anterior cingulate cortex, the dorsolateral prefrontal cortex, and the supplementary motor area. Only a few studies (n = 14) targeted the connectivity of the frontostriatal regions. However, post-hoc analyses of connectivity changes were reported in more cases (n = 32). Neurofeedback has been frequently used to modify brain activations within the frontostriatal circuitry. Given the regulatory mechanisms within the closed loop of the frontostriatal circuitry, the connectivity-based neurofeedback paradigms should be primarily considered for modifications of this system. The anatomical and functional organization of the frontostriatal system needs to be considered in decisions pertaining to the neurofeedback targets.

17.
CNS Drugs ; 36(8): 819-858, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35831706

RESUMO

Cognitive impairments associated with schizophrenia (CIAS) represent a central element of the symptomatology of this severe mental disorder. CIAS substantially determine the disease prognosis and hardly, if at all, respond to treatment with currently available antipsychotics. Remarkably, all drugs presently approved for the treatment of schizophrenia are, to varying degrees, dopamine D2/D3 receptor blockers. In turn, rapidly growing evidence suggests the immense significance of systems other than the dopaminergic system in the genesis of CIAS. Accordingly, current efforts addressing the unmet needs of patients with schizophrenia are primarily based on interventions in other non-dopaminergic systems. In this review article, we provide a brief overview of the available evidence on the importance of specific systems in the development of CIAS. In addition, we describe the promising targets for the development of new drugs that have been used so far. In doing so, we present the most important candidates that have been investigated in the field of the specific systems in recent years and present a summary of the results available at the time of drafting this review (May 2022), as well as the currently ongoing studies.


Assuntos
Antipsicóticos , Transtornos Cognitivos , Disfunção Cognitiva , Esquizofrenia , Antipsicóticos/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/etiologia , Dopamina/uso terapêutico , Humanos , Esquizofrenia/complicações , Esquizofrenia/tratamento farmacológico
18.
Int J Med Inform ; 161: 104724, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35279550

RESUMO

BACKGROUND: Health care records provide large amounts of data with real-world and longitudinal aspects, which is advantageous for predictive analyses and improvements in personalized medicine. Text-based records are a main source of information in mental health. Therefore, application of text mining to the electronic health records - especially mental state examination - is a key approach for detection of psychiatric disease phenotypes that relate to treatment outcomes. METHODS: We focused on the mental state examination (MSE) in the patients' discharge summaries as the key part of the psychiatric records. We prepared a sample of 150 text documents that we manually annotated for psychiatric attributes and symptoms. These documents were further divided into training and test sets. We designed and implemented a system to detect the psychiatric attributes automatically and linked the pathologically assessed attributes to AMDP terminology. This workflow uses a pre-trained neural network model, which is fine-tuned on the training set, and validated on the independent test set. Furthermore, a traditional NLP and rule-based component linked the recognized mentions to AMDP terminology. In a further step, we applied the system on a larger clinical dataset of 510 patients to extract their symptoms. RESULTS: The system identified the psychiatric attributes as well as their assessment (normal and pathological) and linked these entities to the AMDP terminology with an F1-score of 86% and 91% on an independent test set, respectively. CONCLUSION: The development of the current text mining system and the results highlight the feasibility of text mining methods applied to MSE in electronic mental health care reports. Our findings pave the way for the secondary use of routine data in the field of mental health, facilitating further clinical data analyses.


Assuntos
Aprendizado Profundo , Saúde Mental , Mineração de Dados/métodos , Registros Eletrônicos de Saúde , Humanos , Processamento de Linguagem Natural , Redes Neurais de Computação
19.
Hum Brain Mapp ; 43(6): 2026-2040, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35044722

RESUMO

The growing demand for precise and reliable biomarkers in psychiatry is fueling research interest in the hope that identifying quantifiable indicators will improve diagnoses and treatment planning across a range of mental health conditions. The individual properties of brain networks at rest have been highlighted as a possible source for such biomarkers, with the added advantage that they are relatively straightforward to obtain. However, an important prerequisite for their consideration is their reproducibility. While the reliability of resting-state (RS) measurements has often been studied at standard field strengths, they have rarely been investigated using ultrahigh-field (UHF) magnetic resonance imaging (MRI) systems. We investigated the intersession stability of four functional MRI RS parameters-amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF; representing the spontaneous brain activity), regional homogeneity (ReHo; measure of local connectivity), and degree centrality (DC; measure of long-range connectivity)-in three RS networks, previously shown to play an important role in several psychiatric diseases-the default mode network (DMN), the central executive network (CEN), and the salience network (SN). Our investigation at individual subject space revealed a strong stability for ALFF, ReHo, and DC in all three networks, and a moderate level of stability in fALFF. Furthermore, the internetwork connectivity between each network pair was strongly stable between CEN/SN and moderately stable between DMN/SN and DMN/SN. The high degree of reliability and reproducibility in capturing the properties of the three major RS networks by means of UHF-MRI points to its applicability as a potentially useful tool in the search for disease-relevant biomarkers.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes
20.
J Clin Med ; 11(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011989

RESUMO

Comprehensive Behavioral Intervention for Tics (CBIT) is considered a first-line therapy for tics. However, availability of CBIT is extremely limited due to a lack of qualified therapists. This study is a multicenter (n = 5), randomized, controlled, observer-blind trial including 161 adult patients with chronic tic disorders (CTD) to provide data on efficacy and safety of an internet-delivered, completely therapist-independent CBIT intervention (iCBIT Minddistrict®) in the treatment of tics compared to placebo and face-to-face (f2f) CBIT. Using a linear mixed model with the change to baseline of Yale Global Tic Severity Scale-Total Tic Score (YGTSS-TTS) as a dependent variable, we found a clear trend towards significance for superiority of iCBIT (n = 67) over placebo (n = 70) (-1.28 (-2.58; 0.01); p = 0.053). In addition, the difference in tic reduction between iCBIT and placebo increased, resulting in a significant difference 3 (-2.25 (-3.75; -0.75), p = 0.003) and 6 months (-2.71 (-4.27; -1.16), p < 0.001) after the end of treatment. Key secondary analysis indicated non-inferiority of iCBIT in comparison to f2f CBIT (n = 24). No safety signals were detected. Although the primary endpoint was narrowly missed, it is strongly suggested that iCBIT is superior compared to placebo. Remarkably, treatment effects of iCBIT even increased over time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA