Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 84(23): 15009-15019, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31536339

RESUMO

Four distinct folding patterns are identified in two foldamer-type urea-thiourea catalysts bearing a basic dimethylamino unit by a combination of X-ray crystallography, solution NMR studies, and computational studies (DFT). These patterns are characterized by different intramolecular hydrogen bonding schemes that arise largely from different thiourea conformers. The free base forms of the catalysts are characterized by folds where the intramolecular hydrogen bonds between the urea and the thiourea units remain intact. In contrast, the catalytically relevant salt forms of the catalyst, where the catalyst forms an ion pair with the substrate or substrate analogues, appear in two entirely different folding patterns. With larger anions that mimic the dialkyl malonate substrates, the catalysts maintain their native fold both in the solid state and in solution, but with smaller halide anions (fluoride, chloride, and bromide), the catalysts fold around the halide anion (anion receptor fold), and the intramolecular hydrogen bonds are disrupted. Titration of catalyst hexafluoroacetylacetonate salt with tetra-n-butylammonium chloride results in dynamic refolding of the catalyst from the native fold to the anion receptor fold.

2.
Org Lett ; 16(19): 5152-5, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25229423

RESUMO

An efficient urea-enhanced thiourea catalyst enables the enantioselective Mannich reaction between ß-keto esters and N-Boc-protected imines under mild conditions and minimal catalyst loading (1-3 mol %). Aliphatic and aromatic substituents are tolerated on both reaction partners, affording the products in good enantiomeric purity. The corresponding ß-amino ketones can readily be accessed via decarboxylation without loss of enantiomeric purity.


Assuntos
Iminas/química , Cetonas/síntese química , Tioureia/química , Ureia/química , Catálise , Descarboxilação , Ésteres , Cetonas/química , Estrutura Molecular , Estereoisomerismo
3.
J Am Chem Soc ; 136(17): 6453-62, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24684203

RESUMO

Cross-dehydrogenative coupling reactions between ß-ketoesters and electron-rich arenes, such as indoles, proceed with high regiochemical fidelity with a range of ß-ketoesters and indoles. The mechanism of the reaction between a prototypical ß-ketoester, ethyl 2-oxocyclopentanonecarboxylate, and N-methylindole has been studied experimentally by monitoring the temporal course of the reaction by (1)H NMR, kinetic isotope effect studies, and control experiments. DFT calculations have been carried out using a dispersion-corrected range-separated hybrid functional (ωB97X-D) to explore the basic elementary steps of the catalytic cycle. The experimental results indicate that the reaction proceeds via two catalytic cycles. Cycle A, the dehydrogenation cycle, produces an enone intermediate. The dehydrogenation is assisted by N-methylindole, which acts as a ligand for Pd(II). The computational studies agree with this conclusion, and identify the turnover-limiting step of the dehydrogenation step, which involves a change in the coordination mode of the ß-keto ester ligand from an O,O'-chelate to an α-C-bound Pd enolate. This ligand tautomerization event is assisted by the π-bound indole ligand. Subsequent scission of the ß'-C-H bond takes place via a proton-assisted electron transfer mechanism, where Pd(II) acts as an electron sink and the trifluoroacetate ligand acts as a proton acceptor, to produce the Pd(0) complex of the enone intermediate. The coupling is completed in cycle B, where the enone is coupled with indole. Pd(TFA)2 and TFA-catalyzed pathways were examined experimentally and computationally for this cycle, and both were found to be viable routes for the coupling step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA