Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Leukoc Biol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527801

RESUMO

Eosinophil sombrero vesicles (EoSVs) are large tubular carriers resident in the cytoplasm of human eosinophils, identifiable by transmission electron microscopy (TEM), and important for immune mediator transport. Increased EoSV formation occurs in activated eosinophils in vitro and in vivo. In tissue sites of eosinophilic cytolytic inflammation, extracellular EoSVs are noted, but their frequency and significance in eosinophil-associated diseases (EADs) remain unclear. Here, we performed comprehensive quantitative TEM analyses and electron tomography to investigate the numbers, density, integrity, and three-dimensional (3D) structure of EoSVs in different biopsy tissues from five prototypic EADs (eosinophilic chronic rhinosinusitis/nasal sinuses, ulcerative colitis/intestines, hypereosinophilic syndrome/skin, dermatitis/skin, and schistosomiasis/rectum). The morphology of extracellular EoSVs was also compared with that of cytoplasmic EoSVs, isolated by subcellular fractionation from peripheral blood eosinophils. We demonstrated that: i) eosinophil cytolysis, releasing intact EoSVs and membrane-bound granules, is a consistent event in all EADs; ii) EoSVs persist intact even after complete disintegration of all cell organelles, except granules (late cytolysis); iii) the EoSV population, composed of elongated, curved, and typical sombreros, and the EoSV 3D architecture, diameter, and density remain unchanged in the extracellular matrix; iv) free EoSVs closely associate with extracellular granules; and v) free EoSVs also associate with externalized chromatin during eosinophil ETosis. Remarkably, EoSVs appeared on the surface of other cells like plasma cells. Thus, eosinophil cytolysis/ETosis can secrete intact EoSVs, alongside granules, in inflamed tissues of EADs, potentially serving as propagators of eosinophil immune responses post-cell death.

2.
Microorganisms ; 10(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296298

RESUMO

Eosinophils are remarkably recruited during schistosomiasis mansoni, one of the most common parasitic diseases worldwide. These cells actively migrate and accumulate at sites of granulomatous inflammation termed granulomas, the main pathological feature of this disease. Eosinophils colonize granulomas as a robust cell population and establish complex interactions with other immune cells and with the granuloma microenvironment. Eosinophils are the most abundant cells in granulomas induced by Schistosoma mansoni infection, but their functions during this disease remain unclear and even controversial. Here, we explore the current information on eosinophils as components of Schistosoma mansoni granulomas in both humans and natural and experimental models and their potential significance as central cells triggered by this infection.

3.
Front Immunol ; 13: 938691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874692

RESUMO

Eosinophilic diseases, also termed eosinophil-associated diseases (EADs), are characterized by eosinophil-rich inflammatory infiltrates and extensive eosinophil degranulation with clinically relevant organ pathology. Recent evidence shows that eosinophil cytolytic degranulation, that is, the release of intact, membrane-delimited granules that arises from the eosinophil cytolysis, occurs mainly through ETosis, meaning death with a cytolytic profile and extrusion of nucleus-originated DNA extracellular traps (ETs). The ultrastructural features of eosinophil ETosis (EETosis) have been studied mostly in vitro after stimulation, but are still poorly understood in vivo. Here, we investigated in detail, by transmission electron microscopy (TEM), the ultrastructure of EETosis in selected human EADs affecting several tissues and organ systems. Biopsies of patients diagnosed with eosinophilic chronic rhinosinusitis/ECRS (frontal sinus), ulcerative colitis/UC (intestine), and hypereosinophilic syndrome/HES (skin) were processed for conventional TEM. First, we found that a large proportion of tissue-infiltrated eosinophils in all diseases (~45-65% of all eosinophils) were undergoing cytolysis with release of free extracellular granules (FEGs). Second, we compared the morphology of tissue inflammatory eosinophils with that shown by in vitro ETosis-stimulated eosinophils. By applying single-cell imaging analysis, we sought typical early and late EETosis events: chromatin decondensation; nuclear delobulation and rounding; expanded nuclear area; nuclear envelope alterations and disruption; and extracellular decondensed chromatin spread as ETs. We detected that 53% (ECRS), 37% (UC), and 82% (HES) of all tissue cytolytic eosinophils had ultrastructural features of ETosis in different degrees. Eosinophils in early ETosis significantly increased their nuclear area compared to non-cytolytic eosinophils due to excessive chromatin decondensation and expansion observed before nuclear envelope disruption. ETosis led not only to the deposition of intact granules, but also to the release of eosinophil sombrero vesicles (EoSVs) and Charcot-Leyden crystals (CLCs). Free intact EoSVs and CLCs were associated with FEGs and extracellular DNA nets. Interestingly, not all cytolytic eosinophils in the same microenvironment exhibited ultrastructure of ETosis, thus indicating that different populations of eosinophils might be selectively activated into this pathway. Altogether, our findings captured an ultrastructural signature of EETosis in vivo in prototypic EADs highlighting the importance of this event as a form of eosinophil degranulation and release of inflammatory markers (EoSVs and CLCs).


Assuntos
Eosinófilos , Síndrome Hipereosinofílica , Cromatina/metabolismo , DNA/metabolismo , Eosinófilos/metabolismo , Humanos , Síndrome Hipereosinofílica/patologia , Microscopia Eletrônica de Transmissão
4.
Front Cell Dev Biol ; 10: 836755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386204

RESUMO

Mitochondria are multifunctional organelles of which ultrastructure is tightly linked to cell physiology. Accumulating evidence shows that mitochondrial remodeling has an impact on immune responses, but our current understanding of the mitochondrial architecture, interactions, and morphological changes in immune cells, mainly in eosinophils, is still poorly known. Here, we applied transmission electron microscopy (TEM), single-cell imaging analysis, and electron tomography, a technique that provides three-dimensional (3D) views at high resolution, to investigate mitochondrial dynamics in mouse eosinophils developing in cultures as well as in the context of inflammatory diseases characterized by recruitment and activation of these cells (mouse models of asthma, H1N1 influenza A virus (IAV) infection, and schistosomiasis mansoni). First, quantitative analyses showed that the mitochondrial area decrease 70% during eosinophil development (from undifferentiated precursor cells to mature eosinophils). Mitophagy, a consistent process revealed by TEM in immature but not in mature eosinophils, is likely operating in mitochondrial clearance during eosinophilopoiesis. Events of mitochondria interaction (inter-organelle membrane contacts) were also detected and quantitated within developing eosinophils and included mitochondria-endoplasmic reticulum, mitochondria-mitochondria, and mitochondria-secretory granules, all of them significantly higher in numbers in immature compared to mature cells. Moreover, single-mitochondrion analyses revealed that as the eosinophil matures, mitochondria cristae significantly increase in number and reshape to lamellar morphology. Eosinophils did not change (asthma) or reduced (IAV and Schistosoma infections) their mitochondrial mass in response to inflammatory diseases. However, asthma and schistosomiasis, but not IAV infection, induced amplification of both cristae numbers and volume in individual mitochondria. Mitochondrial cristae remodeling occurred in all inflammatory conditions with the proportions of mitochondria containing only lamellar or tubular, or mixed cristae (an ultrastructural aspect seen just in tissue eosinophils) depending on the tissue/disease microenvironment. The ability of mitochondria to interact with granules, mainly mobilized ones, was remarkably captured by TEM in eosinophils participating in all inflammatory diseases. Altogether, we demonstrate that the processes of eosinophilopoiesis and inflammation-induced activation interfere with the mitochondrial dynamics within mouse eosinophils leading to cristae remodeling and inter-organelle contacts. The understanding of how mitochondrial dynamics contribute to eosinophil immune functions is an open interesting field to be explored.

5.
Biol Rev Camb Philos Soc ; 96(4): 1404-1420, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33754464

RESUMO

Schistosomiasis, a neglected parasitic tropical disease that has plagued humans for centuries, remains a major public health burden. A primary challenge to understanding schistosomiasis is deciphering the most remarkable pathological feature of this disease, the granuloma - a highly dynamic and self-organized structure formed by both host and parasite components. Granulomas are considered a remarkable example of how parasites evolved with their hosts to establish complex and intimate associations. However, much remains unclear regarding life within the granuloma, and strategies to restrain its development are still lacking. Here we explore current information on the hepatic Schistosoma mansoni granuloma in the light of Ecology and propose that this intricate structure acts as a real ecosystem. The schistosomal granuloma is formed by cells (biotic component), protein scaffolds, fibres, and chemical compounds (abiotic components) with inputs/outputs of energy and matter, as complex as in classical ecosystems. We review the distinct cell populations ('species') within the granuloma and examine how they integrate with each other and interact with their microenvironment to form a multifaceted cell community in different space-time frames. The colonization of the hepatic tissue to form granulomas is explained from the point of view of an ecological succession whereby a community is able to modify its physical environment, creating conditions and resources for ecosystem construction. Remarkably, the granuloma represents a dynamic evolutionary system that undergoes progressive changes in the 'species' that compose its community over time. In line with ecological concepts, we examine the granuloma not only as a place where a community of cells is settled (spatial niche or habitat) but also as a site in which the functional activities of these combined populations occur in an orchestrated way in response to microenvironmental gradients such as cytokines and egg antigens. Finally, we assert how the levels of organization of cellular components in a granuloma as conventionally defined by Cell Biology can fit perfectly into a hierarchical structure of biological systems as defined by Ecology. By rethinking the granuloma as an integrating and evolving ecosystem, we draw attention to the inner workings of this structure that are central to the understanding of schistosomiasis and could guide its future treatment.


Assuntos
Esquistossomose mansoni , Animais , Ecossistema , Granuloma , Humanos , Schistosoma mansoni
6.
Front Med (Lausanne) ; 6: 310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31970160

RESUMO

Histological analysis of hepatic tissue specimens is essential for evaluating the pathology of several liver disorders such as chronic liver diseases, hepatocellular carcinomas, liver steatosis, and infectious liver diseases. Manual examination of histological slides on the microscope is a classically used method to study these disorders. However, it is considered time-consuming, limited, and associated with intra- and inter-observer variability. Emerging technologies such as whole slide imaging (WSI), also termed virtual microscopy, have increasingly been used to improve the assessment of histological features with applications in both clinical and research laboratories. WSI enables the acquisition of the tissue morphology/pathology from glass slides and translates it into a digital form comparable to a conventional microscope, but with several advantages such as easy image accessibility and storage, portability, sharing, annotation, qualitative and quantitative image analysis, and use for educational purposes. WSI-generated images simultaneously provide high resolution and a wide field of observation that can cover the entire section, extending any single field of view. In this review, we summarize current knowledge on the application of WSI to histopathological analyses of liver disorders as well as to understand liver biology. We address how WSI may improve the assessment and quantification of multiple histological parameters in the liver, and help diagnose several hepatic conditions with important clinical implications. The WSI technical limitations are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA