Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mov Sci ; 95: 103223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692198

RESUMO

Older adults have a decreased trunk movement control which is linked to their higher fall risk. While motor/cognitive dual-tasking deteriorates balance and walking in older adults, there is limited understanding on how trunk kinematics and kinetics are affected by dual-tasking in scenarios where falls can occur. Therefore, the purpose of the study was to determine the impacts of a challenging motor dual-task, specifically obstacle avoidance during walking, on trunk and lower-body kinematics and kinetics of older adults compared to young adults. The study captured three-dimensional kinematic and kinetic data from 12 young adults and 10 older adults as they walked on a treadmill and stepped over an obstacle with both legs. The study analyzed trunk, hip, knee, and ankle angles and torques. Trunk torque was further broken down to trunk muscle torque, gravitational torque, and inertia torque. A linear mixed effects model was used to investigate the difference in each variable between the two groups. Older adults exhibited significantly increased trunk flexion angle and trunk extension muscle torque compared to young adults, with the trunk being the only segment/joint showing differences in both kinematics and kinetics. Trunk torque breakdown analysis revealed that larger trunk flexion led to a larger gravitational torque, which contributed to an increased compensatory trunk muscle torque. Moreover, older adults' less controlled trunk flexion during weight shifting from trail leg to the lead leg, necessitated a compensatory trunk deceleration during trail leg obstacle avoidance which was achieved by generating additional increase in trunk muscle torque. The study demonstrated that motor dual-tasking has the most negative effects on trunk control in older adults compared to young adults. This exposes older adults to a higher fall risk. Therefore, future work should focus on supporting trunk control during daily multi-tasking conditions where falls can occur.


Assuntos
Equilíbrio Postural , Tronco , Caminhada , Humanos , Fenômenos Biomecânicos/fisiologia , Idoso , Masculino , Feminino , Tronco/fisiologia , Caminhada/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Adulto Jovem , Torque , Acidentes por Quedas , Desempenho Psicomotor/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Envelhecimento/fisiologia
2.
Hum Mov Sci ; 87: 103053, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584495

RESUMO

Dynamic and cognitive multi-tasking might affect balance and walking negatively and increase risk of falling. Trunk movement control is critical for balance maintenance and fall-prevention. The impact of multi-tasking on trunk movement control has not been thoroughly studied. In a challenging dynamic multi-tasking condition such as walking and obstacle avoidance, presence of a cognitive task not only increases risk of tripping but also may increase risk of falling by deteriorating trunk control. Our objective was to investigate the impacts of a challenging dynamic and cognitive multi-tasking condition (walking + obstacle avoidance + cognitive task) on trunk kinematics and kinetics and compare those with other joints/segments. Trunk, pelvis, hip, knee, and ankle kinematics and kinetics of 12 young adults were compared between joints/segments and conditions. During walking and obstacle avoidance (dynamic multi-tasking), the trunk had the largest normalized increase in peak flexion angle and extension torque compared to walking, among the other joints/segments. The presence of a cognitive task during walking and obstacle avoidance (dynamic and cognitive multi-tasking) did not impact any of the joints/segments biomechanics except the trunk peak extension torque that was increased. Furthermore, trunk kinematics showed the largest residual differences (post-effects) in 3 cycles after obstacle avoidance compared to walking. The presence of a cognitive task (dynamic and cognitive multi-tasking) did not impact the post-effects of obstacle avoidance on any joints/segments except the trunk with its residual difference from normal walking further increased. These results suggest that a cognitive task deteriorates trunk control and interferes with the ability to regain normal trunk biomechanics after obstacle avoidance. In summary, the trunk requires the largest biomechanical adjustments in a challenging dynamic and cognitive multi-tasking condition where there is a risk of falling. Our study provides baseline results suggesting that trunk control demands more attention and is more negatively affected by dynamic and cognitive multi-tasking. Our results raise a concern for elderly population as their trunk control is already impaired and common daily multi-tasking could further deteriorate their trunk control and increase fall risk.


Assuntos
Extremidade Inferior , Caminhada , Adulto Jovem , Humanos , Idoso , Caminhada/psicologia , Movimento , Tornozelo , Joelho , Fenômenos Biomecânicos , Marcha
3.
Gait Posture ; 92: 144-152, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34847412

RESUMO

BACKGROUND: Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FES) are commonly prescribed to treat foot-drop in individuals with stroke. Despite well-established positive impacts of AFO and FES devices on balance and gait, AFO and FES-users still fall at a high rate. OBJECTIVE: The objective of this study was to investigate 1) the underlying biomechanical mechanisms leading to a fall in long-term AFO and FES-users with chronic stroke and 2) the impacts of AFOs and FES devices on fall outcomes and compensatory stepping response of long-term users with chronic stroke. METHODS: Fall outcomes as well as kinematics and kinetics of compensatory stepping response of 42 individuals with chronic stroke (14 AFO-users, 10 FES-users, 18 Non-users) were evaluated during trip-like treadmill perturbations. AFO and FES-users were evaluated with and without their device. RESULTS: Chronic AFO and FES-users fell 2.50 and 2.77 times more than Non-users. The most robust differences between AFO/FES-users and Non-users were 1) Reduced capacity to stabilize the trunk through reduction in forward whole-body angular momentum and 2) diminished capability to prepare and generate a second step using the paretic leg. Provocatively, the removal of AFO and FES devices did not decease/increase falls or change kinematics. SIGNIFICANCE: It is well-established that AFOs/FES devices have a positive impact on static balance and decrease community falls by increasing toe clearance thus preventing trips/stumbles. However, our results suggest that once a trip occurs, these devices do not adequately assist recovery of balance. Specifically, current AFO and FES devices do not assist with second step generation or trunk control. Future studies should explore new devices or training paradigms that target enhancing trunk control and paretic compensatory stepping to decrease falls in this population.


Assuntos
Terapia por Estimulação Elétrica , Órtoses do Pé , Transtornos Neurológicos da Marcha , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Tornozelo , Fenômenos Biomecânicos , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Acidente Vascular Cerebral/complicações
4.
J Biomech ; 103: 109703, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32197789

RESUMO

Ankle-foot-orthoses (AFOs) are commonly prescribed to treat foot drop and enhance walking in fall-prone individuals (e.g. stroke). AFOs improve static balance but AFO-users are still at high fall risk. To our knowledge, no one has studied the biomechanical effect of AFO-use on the compensatory stepping response required to avoid falling during dynamic conditions such as trip, the leading cause of falls. The objective of this study is to evaluate the impact of a semi-rigid thermoplastic AFO on the compensatory stepping response in young healthy individuals following trip-like treadmill perturbations. We found that the AFO on the stepping leg (AFO-step) decreased trunk stability (increased trunk angle and angular velocity), shortened the compensatory step length, and reduced dynamic stability (smaller COM-BOS). AFO on the support leg (AFO-support) was only marginally different from the No-AFO condition. Detrimental changes in compensatory stepping response (e.g. decreased trunk stability) were linearly correlated to diminished propulsive impulse of the step. In summary, AFO-use on the stepping leg is associated with impaired compensatory stepping response (e.g. reduced trunk stability) and decreased propulsive impulse in young adults. It is important to note that AFO-use enhances static stability and decreases the probability of a trip/stumble occurring indicating they are important for fall prevention. Still, our results suggest that AFO-use may impair the compensatory stepping response after a trip/stumble has occurred and may suggest that preserving plantarflexion function may support the compensatory stepping response. Further study of these devices and their impact on compensatory stepping response in fall-prone individuals is warranted.


Assuntos
Acidentes por Quedas/prevenção & controle , Órtoses do Pé , Aparelhos Ortopédicos/estatística & dados numéricos , Adulto , Tornozelo/fisiopatologia , Fenômenos Biomecânicos/fisiologia , Feminino , Marcha/fisiologia , Humanos , Masculino , Aparelhos Ortopédicos/normas , Equilíbrio Postural/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Tronco/fisiopatologia , Caminhada/fisiologia , Adulto Jovem
5.
Gait Posture ; 70: 222-228, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30904789

RESUMO

BACKGROUND: Individuals with stroke are at significant risk of falling. Trip-specific training is a targeted training approach that has been shown to reduce falls in older adults and amputees by enhancing the compensatory stepping response required to prevent a fall. Still, individuals with stroke have unique deficits (e.g. spasticity) which draws into question if this type of training will be effective for this population. OBJECTIVE: Evaluate if a single session of trip-specific training can modify the compensatory stepping response (trunk movement, step length/duration, reaction time) of individuals with chronic stroke. METHODS: Sixteen individuals with unilateral chronic stroke participated in a single session of trip-specific training consisting of 15 treadmill perturbations. A falls assessment consisting of 3 perturbations was completed before and after training. Recovery step kinematics measured during the pre- and post-test were compared using a repeated measures design. Furthermore, Fallers (those who experienced at least one fall during the pre- or post-test) were compared to Non-fallers. RESULTS: Trip-specific training decreased trunk movement post perturbation. Specifically following training, Trunk flexion was 48 and 19 percent smaller on the small and medium perturbations at the end of the first compensatory step. Fallers (9 out of 16 subjects) post-training resembled Non-Fallers pre-training. Specifically, Trunk flexion at the completion of the first step during small and medium perturbations was not different between Fallers post-training and Non-Fallers pre-training. Still enthusiasm was tempered because Trunk flexion at the largest perturbation (where most falls occurred) was not changed and therefore total falls were not reduced as a result of this training. SIGNIFICANCE: Our results indicate that trip-specific training modifies the dynamic falls response immediately following trip-like treadmill perturbations. However, the incidence of falls was not reduced with a single training session. Further study of the implications and length of the observed intervention effect are warranted.


Assuntos
Acidentes por Quedas/prevenção & controle , Marcha/fisiologia , Equilíbrio Postural/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/fisiopatologia , Idoso , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tronco/fisiopatologia
6.
J Biomech ; 49(14): 3313-3319, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27614614

RESUMO

Falls are the most common and expensive medical complication in stroke survivors. There is remarkably little information about what factors lead to a fall in stroke survivors. With few exceptions, the falls literature in stroke has focused on relating metrics of static balance and impairment to fall outcomes in the acute care setting or in community. While informative, these studies provide little information about what specific impairments in a stroke-survivor's response to dynamic balance challenges lead to a fall. We identified the key kinematic characteristics of stroke survivors' stepping responses following a balance disturbance that are associated with a fall following dynamic balance challenges. Stroke survivors were exposed to posteriorly-directed translations of a treadmill belt that elicited a stepping response. Kinematics were compared between successful and failed recovery attempts (i.e. a fall). We found that the ability to arrest and reverse trunk flexion and the ability to perform an appropriate initial compensatory step were the most critical response contributors to a successful recovery. We also identified 2 compensatory strategies utilized by stroke survivors to avoid a fall. Despite significant post-stroke functional impairments, the biomechanical causes of trip-related falls by stroke survivors appear to be similar to those of unimpaired older adults and lower extremity amputees. However, compensatory strategies (pivot, hopping) were observed.


Assuntos
Acidentes por Quedas , Laboratórios , Equilíbrio Postural , Acidente Vascular Cerebral/fisiopatologia , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Equilíbrio Postural/fisiologia , Amplitude de Movimento Articular , Sobreviventes , Tronco/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA