Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Math Methods Med ; 2022: 6112815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35096132

RESUMO

Due to the high amount of electronic health records, hospitals have prioritized data protection. Because it uses parallel computing and is distributed, the security of the cloud cannot be guaranteed. Because of the large number of e-health records, hospitals have made data security a major concern. The cloud's security cannot be guaranteed because it uses parallel processing and is distributed. The blockchain (BC) has been deployed in the cloud to preserve and secure medical data because it is particularly prone to security breaches and attacks such as forgery, manipulation, and privacy leaks. An overview of blockchain (BC) technology in cloud storage to improve healthcare system security can be obtained by reading this paper. First, we will look at the benefits and drawbacks of using a basic cloud storage system. After that, a brief overview of blockchain cloud storage technology will be offered. Many researches have focused on using blockchain technology in healthcare systems as a possible solution to the security concerns in healthcare, resulting in tighter and more advanced security requirements being provided. This survey could lead to a blockchain-based solution for the protection of cloud-outsourced healthcare data. Evaluation and comparison of the simulation tests of the offered blockchain technology-focused studies can demonstrate integrity verification with cloud storage and medical data, data interchange with reduced computational complexity, security, and privacy protection. Because of blockchain and IT, business warfare has emerged, and governments in the Middle East have embraced it. Thus, this research focused on the qualities that influence customers' interest in and approval of blockchain technology in cloud storage for healthcare system security and the aspects that increase people's knowledge of blockchain. One way to better understand how people feel about learning how to use blockchain technology in healthcare is through the United Theory of Acceptance and Use of Technology (UTAUT). A snowball sampling method was used to select respondents in an online poll to gather data about blockchain technology in Middle Eastern poor countries. A total of 443 randomly selected responses were tested using SPSS. Blockchain adoption has been shown to be influenced by anticipation, effort expectancy, social influence (SI), facilitation factors, personal innovativeness (PInn), and a perception of security risk (PSR). Blockchain adoption and acceptance were found to be influenced by anticipation, effort expectancy, social influence (SI), facilitating conditions, personal innovativeness (PInn), and perceived security risk (PSR) during the COVID-19 pandemic, as well as providing an overview of current trends in the field and issues pertaining to significance and compatibility.


Assuntos
Blockchain , Segurança Computacional , Atenção à Saúde , Registros Eletrônicos de Saúde , Adulto , Blockchain/normas , Blockchain/estatística & dados numéricos , COVID-19/epidemiologia , Computação em Nuvem/normas , Computação em Nuvem/estatística & dados numéricos , Biologia Computacional , Segurança Computacional/normas , Segurança Computacional/estatística & dados numéricos , Simulação por Computador , Atenção à Saúde/normas , Atenção à Saúde/estatística & dados numéricos , Registros Eletrônicos de Saúde/normas , Registros Eletrônicos de Saúde/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Privacidade , SARS-CoV-2 , Inquéritos e Questionários , Adulto Jovem
2.
Comput Math Methods Med ; 2021: 7727685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917167

RESUMO

Internet of Medical Things (IoMT) has emerged as an integral part of the smart health monitoring system in the present world. The smart health monitoring deals with not only for emergency and hospital services but also for maintaining a healthy lifestyle. The industry 5.0 and 5/6G has allowed the development of cost-efficient sensors and devices which can collect a wide range of human biological data and transfer it through wireless network communication in real time. This led to real-time monitoring of patient data through multiple IoMT devices from remote locations. The IoMT network registers a large number of patients and devices every day, along with the generation of huge amount of big data or health data. This patient data should retain data privacy and data security on the IoMT network to avoid any misuse. To attain such data security and privacy of the patient and IoMT devices, a three-level/tier network integrated with blockchain and interplanetary file system (IPFS) has been proposed. The proposed network is making the best use of IPFS and blockchain technology for security and data exchange in a three-level healthcare network. The present framework has been evaluated for various network activities for validating the scalability of the network. The network was found to be efficient in handling complex data with the capability of scalability.


Assuntos
Blockchain , Segurança Computacional , Internet das Coisas , Computação em Nuvem , Biologia Computacional , Sistemas Computacionais , Confidencialidade , Coleta de Dados , Humanos , Tecnologia de Sensoriamento Remoto , Telemedicina
3.
J Healthc Eng ; 2021: 9591670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631001

RESUMO

Zika virus (ZIKV), the causative agent of Zika fever in humans, is an RNA virus that belongs to the genus Flavivirus. Currently, there is no approved vaccine for clinical use to combat the ZIKV infection and contain the epidemic. Epitope-based peptide vaccines have a large untapped potential for boosting vaccination safety, cross-reactivity, and immunogenicity. Though many attempts have been made to develop vaccines for ZIKV, none of these have proved to be successful. Epitope-based peptide vaccines can act as powerful alternatives to conventional vaccines due to their low production cost, less reactogenic, and allergenic responses. For designing an effective and viable epitope-based peptide vaccine against this deadly virus, it is essential to select the antigenic T-cell epitopes since epitope-based vaccines are considered safe. The in silico machine-learning-based approach for ZIKV T-cell epitope prediction would save a lot of physical experimental time and efforts for speedy vaccine development compared to in vivo approaches. We hereby have trained a machine-learning-based computational model to predict novel ZIKV T-cell epitopes by employing physicochemical properties of amino acids. The proposed ensemble model based on a voting mechanism works by blending the predictions for each class (epitope or nonepitope) from each base classifier. Predictions obtained for each class by the individual classifier are summed up, and the class with the majority vote is predicted upon. An odd number of classifiers have been used to avoid the occurrence of ties in the voting. Experimentally determined ZIKV peptide sequences data set was collected from Immune Epitope Database and Analysis Resource (IEDB) repository. The data set consists of 3,519 sequences, of which 1,762 are epitopes and 1,757 are nonepitopes. The length of sequences ranges from 6 to 30 meter. For each sequence, we extracted 13 physicochemical features. The proposed ensemble model achieved sensitivity, specificity, Gini coefficient, AUC, precision, F-score, and accuracy of 0.976, 0.959, 0.993, 0.994, 0.989, 0.985, and 97.13%, respectively. To check the consistency of the model, we carried out five-fold cross-validation and an average accuracy of 96.072% is reported. Finally, a comparative analysis of the proposed model with existing methods has been carried out using a separate validation data set, suggesting the proposed ensemble model as a better model. The proposed ensemble model will help predict novel ZIKV vaccine candidates to save lives globally and prevent future epidemic-scale outbreaks.


Assuntos
Infecção por Zika virus , Zika virus , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Humanos , Aprendizado de Máquina , Infecção por Zika virus/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA