Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Angiogenesis ; 17(2): 395-406, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24141404

RESUMO

Proper lymphatic function is necessary for the transport of fluids, macromolecules, antigens and immune cells out of the interstitium. The lymphatic endothelium plays important roles in the modulation of lymphatic contractile activity and lymph transport, but it's role as a barrier between the lymph and interstitial compartments is less well understood. Alterations in lymphatic function have long been associated with edema and inflammation although the integrity of the lymphatic endothelial barrier during inflammation is not well-defined. In this paper we evaluated the integrity of the lymphatic barrier in response to inflammatory stimuli commonly associated with increased blood endothelial permeability. We utilized in vitro assays of lymphatic endothelial cell (LEC) monolayer barrier function after treatment with different inflammatory cytokines and signaling molecules including TNF-α, IL-6, IL-1ß, IFN-γ and LPS. Moderate increases in an index of monolayer barrier dysfunction were noted with all treatments (20-60 % increase) except IFN-γ which caused a greater than 2.5-fold increase. Cytokine-induced barrier dysfunction was blocked or reduced by the addition of LNAME, except for IL-1ß and LPS treatments, suggesting a regulatory role for nitric oxide. The decreased LEC barrier was associated with modulation of both intercellular adhesion and intracellular cytoskeletal activation. Cytokine treatments reduced the expression of VE-cadherin and increased scavenging of ß-catenin in the LECs and this was partially reversed by LNAME. Likewise the phosphorylation of myosin light chain 20 at the regulatory serine 19 site, which accompanied the elevated monolayer barrier dysfunction in response to cytokine treatment, was also blunted by LNAME application. This suggests that the lymphatic barrier is regulated during inflammation and that certain inflammatory signals may induce large increases in permeability.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Citocinas/farmacologia , Células Endoteliais/citologia , Endotélio Vascular/citologia , Mediadores da Inflamação/farmacologia , Animais , Antígenos CD/metabolismo , Western Blotting , Caderinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Imunofluorescência , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos Sprague-Dawley , S-Nitroso-N-Acetilpenicilamina/farmacologia , Proteínas de Transporte Vesicular/metabolismo
2.
Shock ; 39(2): 161-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23324886

RESUMO

Hemorrhagic shock (HS)-induced microvascular hyperpermeability poses a serious challenge in the management of trauma patients. Microvascular hyperpermeability occurs mainly because of the disruption of endothelial cell adherens junctions, where the "intrinsic" apoptotic signaling plays a regulatory role. The purpose of this study was to understand the role of the "extrinsic" apoptotic signaling molecules, particularly Fas-Fas ligand interaction in microvascular endothelial barrier integrity. Rat lung microvascular endothelial cells (RLMECs) were exposed to HS serum in the presence or absence of the Fas ligand inhibitor, FasFc. The effect of HS serum on Fas receptor and Fas ligand expression on RLMECs was determined by flow cytometry. Endothelial cell permeability was determined by monolayer permeability assay and the barrier integrity by ß-catenin immunofluorescence. Mitochondrial reactive oxygen species formation was determined using dihydrorhodamine 123 probe by fluorescent microscopy. Mitochondrial transmembrane potential was studied by fluorescent microscopy as well as flow cytometry. Caspase 3 enzyme activity was assayed fluorometrically. Rat lung microvascular endothelial cells exposed to HS serum showed increase in Fas receptor and Fas ligand expression levels. FasFc treatment showed protection against HS serum-induced disruption of the adherens junctions and monolayer hyperpermeability (P < 0.05) in the endothelial cells. Pretreatment with FasFc also decreased HS serum-induced increase in mitochondrial reactive oxygen species formation, restored HS serum-induced drop in mitochondrial transmembrane potential, and reduced HS serum-induced caspase 3 activity in RLMECs. These findings open new avenues for drug development to manage HS-induced microvascular hyperpermeability by targeting the Fas-Fas ligand-mediated pathway.


Assuntos
Apoptose/fisiologia , Permeabilidade Capilar/fisiologia , Proteína Ligante Fas/antagonistas & inibidores , Pulmão/metabolismo , Choque Hemorrágico/metabolismo , Receptor fas/antagonistas & inibidores , Animais , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Comunicação Celular/fisiologia , Endotélio Vascular/metabolismo , Pulmão/citologia , Masculino , Microvasos/enzimologia , Microvasos/fisiologia , Ratos , Ratos Sprague-Dawley
3.
Cell ; 129(3): 447-50, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17482535

RESUMO

CD95 is the quintessential death receptor and, when it is bound by ligand, cells undergo apoptosis. Recent evidence suggests, however, that CD95 mediates not only apoptosis but also diverse nonapoptotic functions depending on the tissue and the conditions.


Assuntos
Apoptose , Receptor fas/metabolismo , Animais , Proteína Ligante Fas/metabolismo , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais
4.
J Immune Based Ther Vaccines ; 4: 1, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16545119

RESUMO

We hypothesize that the energy strategy of a cell is a key factor for determining how, or if, the immune system interacts with that cell. Cells have a limited number of metabolic states, in part, depending on the type of fuels the cell consumes. Cellular fuels include glucose (carbohydrates), lipids (fats), and proteins. We propose that the cell's ability to switch to, and efficiently use, fat for fuel confers immune privilege. Additionally, because uncoupling proteins are involved in the fat burning process and reportedly in protection from free radicals, we hypothesize that uncoupling proteins play an important role in immune privilege. Thus, changes in metabolism (caused by oxidative stresses, fuel availability, age, hormones, radiation, or drugs) will dictate and initiate changes in immune recognition and in the nature of the immune response. This has profound implications for controlling the symptoms of autoimmune diseases, for preventing graft rejection, and for targeting tumor cells for destruction.

5.
Int J Bioinform Res Appl ; 2(1): 52-62, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-18048153

RESUMO

Existing analysis tools for flow cytometry data offer specialised but limited functionality. This work presents advantages of combining the cytometer's data with sample-specific information. Data is loaded into a relational database, where the analyst can query based on sample characteristics such as species, gender, diet type or sample stain type.


Assuntos
Biologia Computacional/métodos , Citometria de Fluxo/métodos , Anemia Falciforme/metabolismo , Desenho de Equipamento , HIV/metabolismo , Humanos , Técnicas Imunológicas , Armazenamento e Recuperação da Informação , Lipídeos/química , Microdomínios da Membrana , Neoplasias/metabolismo , Linguagens de Programação , Espectrometria de Fluorescência/métodos , Interface Usuário-Computador
6.
J Immune Based Ther Vaccines ; 2(1): 3, 2004 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-14756899

RESUMO

Awidely held view is that oncolytic agents induce death of tumor cells directly. In this report we review and discuss the apoptosis-inducing effects of chemotherapeutics, the effects of chemotherapeutics on metabolic function, and the consequent effects of metabolic function on immune recognition. Finally, we propose that effective chemotherapeutic and/or apoptosis-inducing agents, at concentrations that can be achieved physiologically, do not kill tumor cells directly. Rather, we suggest that effective oncolytic agents sensitize immunologically altered tumor cells to immune recognition and immune-directed cell death.

7.
Nat Cell Biol ; 5(2): 118-25, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12545171

RESUMO

Fas (also known as CD95), a member of the tumour-necrosis receptor factor family of 'death receptors', can induce apoptosis or, conversely, can deliver growth stimulatory signals. Here we report that crosslinking Fas on primary sensory neurons induces neurite growth through sustained activation of the extracellular-signal regulated kinase (ERK) pathway and the consequent upregulation of p35, a mediator of neurite outgrowth. In addition, functional recovery after sciatic nerve injury is delayed in Fas-deficient lpr mice and accelerated by local administration of antibodies against Fas, which indicates that Fas engagement may contribute to nerve regeneration in vivo. Our findings define a role for Fas as an inducer of both neurite growth in vitro and accelerated recovery after nerve injury in vivo.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/fisiologia , Regulação para Cima/fisiologia , Receptor fas/metabolismo , Animais , Técnicas de Cultura , Ativação Enzimática , Citometria de Fluxo , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Humanos , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regeneração Nervosa/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas
8.
FASEB J ; 16(12): 1550-7, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12374777

RESUMO

Acquired or inherent drug resistance is the major problem in achieving successful cancer treatment. However, the mechanism(s) of pleiotropic drug resistance remains obscure. We have identified and characterized a cellular metabolic strategy that differentiates drug-resistant cells from drug-sensitive cells. This strategy may serve to protect drug-resistant cells from damage caused by chemotherapeutic agents and radiation. We show that drug-resistant cells have low mitochondrial membrane potential, use nonglucose carbon sources (fatty acids) for mitochondrial oxygen consumption when glucose becomes limited, and are protected from exogenous stress such as radiation. In addition, drug-resistant cells express high levels of mitochondrial uncoupling protein 2 (UCP2). The discovery of this metabolic strategy potentially facilitates the design of novel therapeutic approaches to drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Células HL-60/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Cisplatino/farmacologia , Resistência a Múltiplos Medicamentos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Citometria de Fluxo , Glucose/metabolismo , Células HL-60/efeitos dos fármacos , Humanos , Membranas Intracelulares/fisiologia , Potenciais da Membrana/fisiologia , Metotrexato/farmacologia , Microscopia Confocal , Mitocôndrias/fisiologia , Ácido Oleico/metabolismo , Oxirredução , Fosforilação Oxidativa , Consumo de Oxigênio , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA