Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 145(4): 1714-25, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17965172

RESUMO

Plant salinity tolerance is a polygenic trait with contributions from genetic, developmental, and physiological interactions, in addition to interactions between the plant and its environment. In this study, we show that in salt-tolerant genotypes of barley (Hordeum vulgare), multiple mechanisms are well combined to withstand saline conditions. These mechanisms include: (1) better control of membrane voltage so retaining a more negative membrane potential; (2) intrinsically higher H(+) pump activity; (3) better ability of root cells to pump Na(+) from the cytosol to the external medium; and (4) higher sensitivity to supplemental Ca(2+). At the same time, no significant difference was found between contrasting cultivars in their unidirectional (22)Na(+) influx or in the density and voltage dependence of depolarization-activated outward-rectifying K(+) channels. Overall, our results are consistent with the idea of the cytosolic K(+)-to-Na(+) ratio being a key determinant of plant salinity tolerance, and suggest multiple pathways of controlling that important feature in salt-tolerant plants.


Assuntos
Membrana Celular/metabolismo , Hordeum/metabolismo , Raízes de Plantas/metabolismo , Potássio/metabolismo , Cloreto de Sódio/metabolismo , Adaptação Fisiológica , Genótipo , Homeostase/fisiologia , Hordeum/genética , Hordeum/fisiologia , Potenciais da Membrana , Técnicas de Patch-Clamp , Epiderme Vegetal/metabolismo , Raízes de Plantas/fisiologia , Canais de Potássio/metabolismo , Bombas de Próton/metabolismo , Protoplastos/metabolismo , Salinidade , Sódio/metabolismo , Radioisótopos de Sódio/metabolismo , Tetraetilamônio
2.
Funct Plant Biol ; 34(2): 150-162, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32689341

RESUMO

A large-scale glasshouse trial, including nearly 70 barley cultivars (5300 plants in total), was conducted over 2 consecutive years to investigate plant physiological responses to salinity. In a parallel set of experiments, plant salt tolerance was assessed by non-invasive microelectrode measurements of net K+ flux from roots of 3-day-old seedlings of each cultivar after 1 h treatment in 80 mm NaCl as described in our previous publication (Chen et al. 2005). K+ flux from the root in response to NaCl treatment was highly (P < 0.001) inversely correlated with relative grain yield, shoot biomass, plant height, net CO2 assimilation, survival rate and thousand-seed weight measured in glasshouse experiments after 4-5 months of salinity treatment. No significant correlation with relative germination rate or tillering was found. In general, 62 out of 69 cultivars followed an inverse relationship between K+ efflux and salt tolerance. In a few cultivars, however, high salt tolerance (measured as grain yield at harvest) was observed for plants showing only modest ability to retain K+ in the root cells. Tissue elemental analysis showed that these plants had a much better ability to prevent Na+ accumulation in plant leaves and, thus, to maintain a higher K+/Na+ ratio. Taken together, our results show that a plant's ability to maintain high K+/Na+ ratio (either retention of K+ or preventing Na+ from accumulating in leaves) is a key feature for salt tolerance in barley.

3.
Plant Physiol ; 141(4): 1653-65, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16798942

RESUMO

Calcium can ameliorate Na+ toxicity in plants by decreasing Na+ influx through nonselective cation channels. Here, we show that elevated external [Ca2+] also inhibits Na+ -induced K+ efflux through outwardly directed, K+ -permeable channels. Noninvasive ion flux measuring and patch-clamp techniques were used to characterize K+ fluxes from Arabidopsis (Arabidopsis thaliana) root mature epidermis and leaf mesophyll under various Ca2+ to Na+ ratios. NaCl-induced K+ efflux was not related to the osmotic component of the salt stress, was inhibited by the K+ channel blocker TEA+, was not mediated by inwardly directed K+ channels (tested in the akt1 mutant), and resulted in a significant decrease in cytosolic K+ content. NaCl-induced K+ efflux was partially inhibited by 1 mm Ca2+ and fully prevented by 10 mm Ca2+. This ameliorative effect was at least partially attributed to a less dramatic NaCl-induced membrane depolarization under high Ca2+ conditions. Patch-clamp experiments (whole-cell mode) have demonstrated that two populations of Ca2+ -sensitive K+ efflux channels exist in protoplasts isolated from the mature epidermis of Arabidopsis root and leaf mesophyll cells. The instantaneously activating K+ efflux channels showed weak voltage dependence and insensitivity to external and internal Na+. Another population of K+ efflux channels was slowly activating, steeply rectifying, and highly sensitive to Na+. K+ efflux channels in roots and leaves showed different Ca2+ and Na+ sensitivities, suggesting that these organs may employ different strategies to withstand salinity. Our results suggest an additional mechanism of Ca2+ action on salt toxicity in plants: the amelioration of K+ loss from the cell by regulating (both directly and indirectly) K+ efflux channels.


Assuntos
Arabidopsis/metabolismo , Cálcio/fisiologia , Membrana Celular/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Cloreto de Sódio/farmacologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Cálcio/metabolismo , Citosol/metabolismo , Condutividade Elétrica , Homeostase , Pressão Osmótica , Técnicas de Patch-Clamp , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Protoplastos/metabolismo , Sódio/metabolismo , Tetraetilamônio/farmacologia
4.
Planta ; 222(6): 1041-50, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16079998

RESUMO

The SOS signal-transduction pathway is known to be important for ion homeostasis and salt tolerance in plants. However, there is a lack of in planta electrophysiological data about how the changes in signalling and ion transport activity are integrated at the cellular and tissue level. In this study, using the non-invasive ion flux MIFE technique, we compared net K+, H+ and Na+ fluxes from elongation and mature root zones of Arabidopsis wild type Columbia and sos mutants. Our results can be summarised as follows: (1) SOS mutations affect the function of the entire root, not just the root apex; (2) SOS signalling pathway is highly branched; (3) Na+ effects on SOS1 may by-pass the SOS2/SOS3 complex in the root apex; (4) SOS mutation affects H+ transport even in the absence of salt stress; (5) SOS1 mutation affects intracellular K+ homeostasis with a plasma membrane depolarisation-activated outward-rectifying K+ channel being a likely target; (6) H+ pump also may be a target of SOS signalling. We provide an improved model of SOS signalling and discuss physiological mechanisms underlying salt stress perception and signalling in plants. Our work shows that in planta studies are essential for understanding the functional genomics of plant salt tolerance.


Assuntos
Arabidopsis/metabolismo , Transporte de Íons , Raízes de Plantas/fisiologia , Transdução de Sinais , Cloreto de Sódio , Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Homeostase , Potenciais da Membrana , Microeletrodos , Mutação , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Prótons , Cloreto de Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/fisiologia
5.
Funct Plant Biol ; 30(11): 1165-1176, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32689098

RESUMO

Ion-selective microelectrodes were used non-invasively to measure the concentration dependence of NH4+ and NO3- fluxes around the roots of intact solution-cultured Eucalyptus nitens (Deane & Maiden) Maiden. In addition, NH4+ and H+ fluxes were measured simultaneously at a range of NH4+ concentrations, and NO3- and H+ fluxes were measured simultaneously at a range of NO3- concentrations. Nitrogen concentrations ranged from 10-250 µM, i.e. in the range corresponding to the high affinity transport system (HATS). Both NH4+ and NO3- fluxes exhibited saturating Michaelis-Menten-style kinetics. The Km was 16 µM for NH4+ and 18 µM for NO3-. Values of Vmax were 53 nmol m-2 s-1 for NH4+ and 37 nmol m-2 s-1 for NO3-. Proton fluxes were highly correlated with NH4+ and NO3- fluxes, but the relationships were different. Proton efflux increased with increasing NH4+ concentration and mirrored the changing NH4+ fluxes. The ratio between NH4+ and H+ fluxes was 1 : -1.6. Proton influx was evident with initial exposure to NO3-, with the flux stoichiometry for NO3- : H+ being 1 : 1.4. Subsequent increases in NO3- concentration caused a gradual increase in H+ efflux such that the flux stoichiometry for NO3- : H+ became 1 : -0.8. The presence of 100 µM NH4+ greatly reduced NO3- fluxes and caused a large and constant H+ efflux. These results are evidence that E. nitens has a preference for NH4+ as a source of N, and that the fluxes of NH4+ and NO3- are quantitatively linked to H+ flux.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA