Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Insect Sci ; 58: 101073, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290694

RESUMO

Odonata is an order of insects that comprises ∼6500 species. They are among the earliest flying insects, and one of the first diverging lineages in the Pterygota. Odonate evolution has been a topic of research for over 100 years, with studies focusing primarily on their flight behavior, color, vision, and aquatic juvenile lifestyles. Recent genomics studies have provided new interpretations about the evolution of these traits. In this paper, we look at how high-throughput sequence data (i.e. subgenomic and genomic data) have been used to answer long-standing questions in Odonata ranging from evolutionary relationships to vision evolution to flight behavior. Additionally, we evaluate these data at multiple taxonomic levels (i.e. ordinal, familial, generic, and population) and provide comparative analysis of genomes across Odonata, identifying features of these new data. Last, we discuss the next two years of Odonata genomic study, with context about what questions are currently being tackled.


Assuntos
Odonatos , Animais , Odonatos/genética , Genômica , Insetos/genética , Fenótipo , Visão Ocular
2.
Ecol Evol ; 13(4): e10025, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37122769

RESUMO

Species delimitation is an imperative first step toward understanding Earth's biodiversity, yet what constitutes a species and the relative importance of the various processes by which new species arise continue to be debatable. Species delimitation in spiders has traditionally used morphological characters; however, certain mygalomorph spiders exhibit morphological homogeneity despite long periods of population-level isolation, absence of gene flow, and consequent high degrees of molecular divergence. Studies have shown strong geographic structuring and significant genetic divergence among several species complexes within the trapdoor spider genus Aptostichus, most of which are restricted to the California Floristic Province (CAFP) biodiversity hotspot. Specifically, the Aptostichus icenoglei complex, which comprises the three sibling species, A. barackobamai, A. isabella, and A. icenoglei, exhibits evidence of cryptic mitochondrial DNA diversity throughout their ranges in Northern, Central, and Southern California. Our study aimed to explicitly test species hypotheses within this assemblage by implementing a cohesion species-based approach. We used genomic-scale data (ultraconserved elements, UCEs) to first evaluate genetic exchangeability and then assessed ecological interchangeability of genetic lineages. Biogeographical analysis was used to assess the likelihood of dispersal versus vicariance events that may have influenced speciation pattern and process across the CAFP's complex geologic and topographic landscape. Considering the lack of congruence across data types and analyses, we take a more conservative approach by retaining species boundaries within A. icenoglei.

3.
Mol Ecol ; 29(12): 2269-2287, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32452095

RESUMO

Although species delimitation can be highly contentious, the development of reliable methods to accurately ascertain species boundaries is an imperative step in cataloguing and describing Earth's quickly disappearing biodiversity. Spider species delimitation remains largely based on morphological characters; however, many mygalomorph spider populations are morphologically indistinguishable from each other yet have considerable molecular divergence. The focus of our study, the Antrodiaetus unicolor species complex containing two sympatric species, exhibits this pattern of relative morphological stasis with considerable genetic divergence across its distribution. A past study using two molecular markers, COI and 28S, revealed that A. unicolor is paraphyletic with respect to A. microunicolor. To better investigate species boundaries in the complex, we implement the cohesion species concept and use multiple lines of evidence for testing genetic exchangeability and ecological interchangeability. Our integrative approach includes extensively sampling homologous loci across the genome using a RADseq approach (3RAD), assessing population structure across their geographic range using multiple genetic clustering analyses that include structure, principal components analysis and a recently developed unsupervised machine learning approach (Variational Autoencoder). We evaluate ecological similarity by using large-scale ecological data for niche-based distribution modelling. Based on our analyses, we conclude that this complex has at least one additional species as well as confirm species delimitations based on previous less comprehensive approaches. Our study demonstrates the efficacy of genomic-scale data for recognizing cryptic species, suggesting that species delimitation with one data type, whether one mitochondrial gene or morphology, may underestimate true species diversity in morphologically homogenous taxa with low vagility.


Assuntos
Genes Mitocondriais , Filogenia , Aranhas , Animais , Biodiversidade , Sudeste dos Estados Unidos , Especificidade da Espécie , Aranhas/classificação , Aranhas/genética , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA