Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
J Neurochem ; 113(1): 175-87, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20070867

RESUMO

The molecular mechanism of action of antipsychotic drugs is not well understood. Their complex receptor affinity profiles indicate that their action could extend beyond dopamine receptor blockade. Single gene expression studies and high-throughput gene profiling have shown the induction of genes from several molecular classes and functional categories. Using a focused microarray approach, we investigated gene regulation in rat striatum, frontal cortex, and hippocampus after chronic administration of haloperidol or olanzapine. Regulated genes were validated by in situ hybridization, real-time PCR, and immunohistochemistry. Only limited overlap was observed in genes regulated by haloperidol and olanzapine. Both drugs elicited maximal gene regulation in the striatum and least in the hippocampus. Striatal gene induction by haloperidol was predominantly in neurotransmitter signaling, G-protein coupled receptors, and transcription factors. Olanzapine prominently induced retinoic acid and trophic factor signaling genes in the frontal cortex. The data also revealed the induction of several genes that could be targeted in future drug development efforts. The study uncovered the induction of several novel genes, including somatostatin receptors and metabotropic glutamate receptors. The results demonstrating the regulation of multiple receptors and transcription factors suggests that both typical and atypical antipsychotics could possess a complex molecular mechanism of action.


Assuntos
Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Haloperidol/análogos & derivados , Animais , Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Haloperidol/farmacologia , Masculino , Neurotransmissores/genética , Neurotransmissores/metabolismo , Olanzapina , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Biol Psychiatry ; 63(7): 710-20, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17936724

RESUMO

BACKGROUND: The transcription factor cyclic adenosine monophosphate response element binding protein (CREB) orchestrates diverse neurobiological processes including cell differentiation, survival, and plasticity. Alterations in CREB-mediated transcription have been implicated in numerous central nervous system (CNS) disorders including depression, anxiety, addiction, and cognitive decline. However, it remains unclear how CREB contributes to normal and aberrant CNS function, as the identity of CREB-regulated genes in brain and the regional and temporal dynamics of CREB function remain largely undetermined. METHODS: We combined microarray and chromatin immunoprecipitation technology to analyze CREB-DNA interactions in brain. We compared the occupancy and activity of CREB at gene promoters in rat frontal cortex, hippocampus, and striatum before and after a rodent model of electroconvulsive therapy. RESULTS: Our analysis identified >860 CREB binding sites in rat brain. We identified multiple genomic loci enriched with CREB binding sites and find that CREB-occupied transcripts interact extensively to promote cell proliferation, plasticity, and resiliency. We discovered regional differences in CREB occupancy and activity that explain, in part, the diverse biological and behavioral outputs of CREB activity in frontal cortex, hippocampus, and striatum. Electroconvulsive seizure rapidly increased CREB occupancy and/or phosphorylation at select promoters, demonstrating that both events contribute to the temporal regulation of the CREB transcriptome. CONCLUSIONS: Our data provide a mechanistic basis for CREB's ability to integrate regional and temporal cues to orchestrate state-specific patterns of transcription in the brain, indicate that CREB is an important mediator of the biological responses to electroconvulsive seizure, and provide global mechanistic insights into CREB's role in psychiatric and cognitive function.


Assuntos
Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/fisiopatologia , Comportamento Aditivo/metabolismo , Comportamento Aditivo/fisiopatologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Proteína de Ligação a CREB/fisiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Depressão/metabolismo , Depressão/fisiopatologia , Eletroconvulsoterapia/efeitos adversos , Convulsões , Animais , Transtornos de Ansiedade/imunologia , Comportamento Aditivo/imunologia , Western Blotting , Encéfalo/imunologia , Proteína de Ligação a CREB/imunologia , Proteína de Ligação a CREB/metabolismo , Proliferação de Células , Corpo Estriado/imunologia , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Depressão/imunologia , Modelos Animais de Doenças , Lobo Frontal/imunologia , Lobo Frontal/metabolismo , Lobo Frontal/fisiopatologia , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Imunoprecipitação , Masculino , Plasticidade Neuronal/fisiologia , Análise Serial de Proteínas , Ratos , Ratos Sprague-Dawley , Convulsões/etiologia , Convulsões/metabolismo , Convulsões/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA