Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Biofilms Microbiomes ; 9(1): 22, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185924

RESUMO

Blastocystis is a species complex that exhibits extensive genetic diversity, evidenced by its classification into several genetically distinct subtypes (ST). Although several studies have shown the relationships between a specific subtype and gut microbiota, there is no study to show the effect of the ubiquitous Blastocystis ST1 on the gut microbiota and host health. Here, we show that Blastocystis ST1 colonization increased the proportion of beneficial bacteria Alloprevotella and Akkermansia, and induced Th2 and Treg cell responses in normal healthy mice. ST1-colonized mice showed decreases in the severity of DSS-induced colitis when compared to non-colonized mice. Furthermore, mice transplanted with ST1-altered gut microbiota were refractory to dextran sulfate sodium (DSS)-induced colitis via induction of Treg cells and elevated short-chain fat acid (SCFA) production. Our results suggest that colonization with Blastocystis ST1, one of the most common subtypes in humans, exerts beneficial effects on host health through modulating the gut microbiota and adaptive immune responses.


Assuntos
Blastocystis , Colite , Microbioma Gastrointestinal , Microbiota , Humanos , Camundongos , Animais , Blastocystis/genética , Colite/induzido quimicamente , Colite/microbiologia , Bactérias
2.
Parasitol Res ; 122(1): 167-176, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36378332

RESUMO

Blastocystis is a ubiquitous, widely distributed protist inhabiting the gastrointestinal tract of humans and other animals. The organism is genetically diverse, and so far, at least 28 subtypes (STs) have been identified with ST1-ST9 being the most common in humans. The pathogenicity of Blastocystis is controversial. Several routes of transmission have been proposed including fecal-oral (e.g., zoonotic, anthroponotic) and waterborne. Research on the latter has gained traction in the last few years with the organism having been identified in various bodies of water, tap water, and rainwater collection containers including water that has been previously filtered and/or chlorinated. Herein, we assessed the resistance of 11 strains maintained in culture, spanning ST1-ST9 to various chlorine and hydrogen peroxide concentrations for 24 h, and performed recovery assays along with re-exposure. Following the treatment with both compounds, all subtypes showed increased resistance, and viability could be visualized at the cellular level. These results are hinting at the presence of mechanism of resistance to both chlorine and hydrogen peroxide. As such, this pilot study can be the platform for developing guidelines for water treatment processes.


Assuntos
Infecções por Blastocystis , Blastocystis , Humanos , Animais , Cloro/farmacologia , Peróxido de Hidrogênio/farmacologia , Projetos Piloto , Variação Genética , Fezes , Prevalência , Filogenia
3.
Genome Biol ; 12(3): R29, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21439036

RESUMO

BACKGROUND: Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease. RESULTS: Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system. CONCLUSIONS: This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions.


Assuntos
Blastocystis/genética , Genoma de Protozoário , Estramenópilas/genética , Animais , Antioxidantes/metabolismo , Sequência de Bases , Blastocystis/metabolismo , Resistência a Múltiplos Medicamentos/genética , Transferência Genética Horizontal , Interações Hospedeiro-Patógeno , Humanos , Redes e Vias Metabólicas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteoma , Estramenópilas/metabolismo , Simbiose/genética , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA