Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Transl Med ; 12(565)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33055244

RESUMO

Joint disorders can be detrimental to quality of life. There is an unmet need for precise functional reconstruction of native-like cartilage and bone tissues in the craniofacial space and particularly for the temporomandibular joint (TMJ). Current surgical methods suffer from lack of precision and comorbidities and frequently involve multiple operations. Studies have sought to improve craniofacial bone grafts without addressing the cartilage, which is essential to TMJ function. For the human-sized TMJ in the Yucatan minipig model, we engineered autologous, biologically, and anatomically matched cartilage-bone grafts for repairing the ramus-condyle unit (RCU), a geometrically intricate structure subjected to complex loading forces. Using image-guided micromilling, anatomically precise scaffolds were created from decellularized bone matrix and infused with autologous adipose-derived chondrogenic and osteogenic progenitor cells. The resulting constructs were cultured in a dual perfusion bioreactor for 5 weeks before implantation. Six months after implantation, the bioengineered RCUs maintained their predefined anatomical structure and regenerated full-thickness, stratified, and mechanically robust cartilage over the underlying bone, to a greater extent than either autologous bone-only engineered grafts or acellular scaffolds. Tracking of implanted cells and parallel bioreactor studies enabled additional insights into the progression of cartilage and bone regeneration. This study demonstrates the feasibility of TMJ regeneration using anatomically precise, autologous, living cartilage-bone grafts for functional, personalized total joint replacement. Inclusion of the adjacent tissues such as soft connective tissues and the TMJ disc could further extend the functional integration of engineered RCUs with the host.


Assuntos
Qualidade de Vida , Engenharia Tecidual , Animais , Cartilagem , Humanos , Suínos , Porco Miniatura , Articulação Temporomandibular , Alicerces Teciduais
2.
J Tissue Eng Regen Med ; 12(2): 468-478, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28600846

RESUMO

Subcutaneous implantation in a mouse can be used to investigate tissue maturation in vivo. Here we demonstrate that this simple model can recapitulate endochondral ossification associated with native skeletal development. By histological and micro-computed tomography analysis we investigated morphological changes of immature bovine osteochondral tissues over the course of subcutaneous implantation in immunocompromised mice for up to 10 weeks. We observed multiple similarities between the ectopic process and native endochondral ossification: (i) permanent cartilage retention in the upper zones; (ii) progressive loss of transient cartilage accompanied by bone formation at the interface; and (iii) remodelling of nascent endochondral bone into mature cancellous bone. Importantly, these processes were mediated by osteoclastogenesis and vascularization. Taken together, these findings advance our understanding of how the simple ectopic model can be used to study phenotypic changes associated with endochondral ossification of native and engineered osteochondral tissues in vivo.


Assuntos
Osteogênese , Animais , Bovinos , Feminino , Implantes Experimentais , Camundongos SCID , Neovascularização Fisiológica
3.
Biomaterials ; 132: 59-71, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28407495

RESUMO

Interest in non-invasive injectable therapies has rapidly risen due to their excellent safety profile and ease of use in clinical settings. Injectable hydrogels can be derived from the extracellular matrix (ECM) of specific tissues to provide a biomimetic environment for cell delivery and enable seamless regeneration of tissue defects. We investigated the in situ delivery of human mesenchymal stem cells (hMSCs) in decellularized meniscus ECM hydrogel to a meniscal defect in a nude rat model. First, decellularized meniscus ECM hydrogel retained tissue-specific proteoglycans and collagens, and significantly upregulated expression of fibrochondrogenic markers by hMSCs versus collagen hydrogel alone in vitro. The meniscus ECM hydrogel in turn supported delivery of hMSCs for integrative repair of a full-thickness defect model in meniscal explants after in vitro culture and in vivo subcutaneous implantation. When applied to an orthotopic model of meniscal injury in nude rat, hMSCs in meniscus ECM hydrogel were retained out to eight weeks post-injection, contributing to tissue regeneration and protection from joint space narrowing, pathologic mineralization, and osteoarthritis development, as evidenced by macroscopic and microscopic image analysis. Based on these findings, we propose the use of tissue-specific meniscus ECM-derived hydrogel for the delivery of therapeutic hMSCs to treat meniscal injury.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Menisco/patologia , Transplante de Células-Tronco Mesenquimais , Cicatrização , Animais , Adesão Celular , Técnicas de Cultura de Células , Proliferação de Células , Sistemas de Liberação de Medicamentos , Matriz Extracelular/patologia , Feminino , Membro Posterior , Humanos , Masculino , Fenômenos Mecânicos , Menisco/lesões , Camundongos Nus , Ratos Nus , Regeneração , Engenharia Tecidual
4.
Proc Natl Acad Sci U S A ; 114(10): 2556-2561, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28228529

RESUMO

Standard isotropic culture fails to recapitulate the spatiotemporal gradients present during native development. Cartilage grown from human mesenchymal stem cells (hMSCs) is poorly organized and unstable in vivo. We report that human cartilage with physiologic organization and in vivo stability can be grown in vitro from self-assembling hMSCs by implementing spatiotemporal regulation during induction. Self-assembling hMSCs formed cartilage discs in Transwell inserts following isotropic chondrogenic induction with transforming growth factor ß to set up a dual-compartment culture. Following a switch in the basal compartment to a hypertrophic regimen with thyroxine, the cartilage discs underwent progressive deep-zone hypertrophy and mineralization. Concurrent chondrogenic induction in the apical compartment enabled the maintenance of functional and hyaline cartilage. Cartilage homeostasis, chondrocyte maturation, and terminal differentiation markers were all up-regulated versus isotropic control groups. We assessed the in vivo stability of the cartilage formed under different induction regimens. Cartilage formed under spatiotemporal regulation in vitro resisted endochondral ossification, retained the expression of cartilage markers, and remained organized following s.c. implantation in immunocompromised mice. In contrast, the isotropic control groups underwent endochondral ossification. Cartilage formed from hMSCs remained stable and organized in vivo. Spatiotemporal regulation during induction in vitro recapitulated some aspects of native cartilage development, and potentiated the maturation of self-assembling hMSCs into stable and organized cartilage resembling the native articular cartilage.


Assuntos
Técnicas de Cultura de Células , Condrócitos/citologia , Condrogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Animais , Biomarcadores/metabolismo , Cartilagem Articular , Diferenciação Celular/efeitos dos fármacos , Condrócitos/imunologia , Condrócitos/transplante , Condrogênese/fisiologia , Colágeno Tipo I/genética , Colágeno Tipo I/imunologia , Cultura em Câmaras de Difusão , Feminino , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos SCID , Osteogênese/fisiologia , Cultura Primária de Células , Tiroxina/farmacologia , Alicerces Teciduais , Fator de Crescimento Transformador beta/farmacologia , Transplante Heterólogo
5.
Tissue Eng Part B Rev ; 23(5): 480-493, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27912680

RESUMO

Although autologous bone grafts are considered a gold standard for the treatment of bone defects, they are limited by donor site morbidities and geometric requirements. We propose that tissue engineering technology can overcome such limitations by recreating fully viable and biological bone grafts. Specifically, we will discuss the use of bone scaffolds and autologous cells with bioreactor culture systems as a tissue engineering paradigm to grow bone in vitro. We will also discuss emergent vascularization strategies to promote graft survival in vivo, as well as the role of inflammation during bone repair. Finally, we will highlight some recent advances and discuss new solutions to bone repair inspired by endochondral ossification.


Assuntos
Biomimética/métodos , Osso e Ossos/fisiologia , Engenharia Tecidual/métodos , Animais , Reatores Biológicos , Humanos , Neovascularização Fisiológica , Alicerces Teciduais/química
6.
Stem Cell Res Ther ; 7(1): 183, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27931263

RESUMO

BACKGROUND: Cartilage formation from self-assembling mesenchymal stem cells (MSCs) in vitro recapitulate important cellular events during mesenchymal condensation that precedes native cartilage development. The goal of this study was to investigate the effects of cartilaginous extracellular matrix (ECM) components and culture regimen on cartilage formation by self-assembling human MSCs in vitro and in vivo. METHODS: Human bone marrow-derived MSCs (hMSCs) were seeded and compacted in 6.5-mm-diameter transwell inserts with coated (type I, type II collagen) or uncoated (vehicle) membranes, at different densities (0.5 × 106, 1.0 × 106, 1.5 × 106 per insert). Pellets were formed by aggregating hMSCs (0.25 × 106) in round-bottomed wells. All tissues were cultured for up to 6 weeks for in vitro analyses. Discs (cultured for 6, 8 or 10 weeks) and pellets (cultured for 10 weeks) were implanted subcutaneously in immunocompromised mice to evaluate the cartilage stability in vivo. RESULTS: Type I and type II collagen coatings enabled cartilage disc formation from self-assembling hMSCs. Without ECM coating, hMSCs formed dome-shaped tissues resembling the pellets. Type I collagen, expressed in the prechondrogenic mesenchyme, improved early chondrogenesis versus type II collagen. High seeding density improved cartilage tissue properties but resulted in a lower yield of disc formation. Discs and pellets exhibited compositional and organizational differences in vitro and in vivo. Prolonged chondrogenic induction of the discs in vitro expedited endochondral ossification in vivo. CONCLUSIONS: The outcomes of cartilage tissues formed from self-assembling MSCs in vitro and in vivo can be modulated by the control of culture parameters. These insights could motivate new directions for engineering cartilage and bone via a cartilage template from self-assembling MSCs.


Assuntos
Cartilagem/citologia , Matriz Extracelular/fisiologia , Células-Tronco Mesenquimais/citologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/fisiologia , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos SCID , Osteogênese/fisiologia , Engenharia Tecidual/métodos
7.
Methods Mol Biol ; 1416: 35-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236665

RESUMO

Mesenchymal stem cells (MSC) are of major interest in regenerative medicine, as they are easily harvested from a variety of sources (including bone marrow and fat aspirates) and they are able to form a range of mesenchymal tissues, in vitro and in vivo. We focus here on the use of MSCs for engineering of cartilage, bone, and complex osteochondral tissue constructs, using protocols that replicate some aspects of natural mesodermal development. For engineering of human bone, we discuss some of the current advances, and highlight the use of perfusion bioreactors for supporting anatomically exact human bone grafts. For engineering of human cartilage, we discuss the limitations of current approaches, and highlight engineering of stratified, mechanically functional human cartilage interfaced with bone by mesenchymal condensation of MSCs. Taken together, current advances enable engineering of physiologically relevant bone, cartilage and osteochondral composites, and physiologically relevant studies of osteochondral development and disease.


Assuntos
Condrócitos/citologia , Células-Tronco Mesenquimais/citologia , Osteócitos/citologia , Engenharia Tecidual/instrumentação , Reatores Biológicos , Cartilagem Articular/citologia , Humanos , Transplante de Células-Tronco Mesenquimais , Medicina Regenerativa , Engenharia Tecidual/métodos
8.
Biomaterials ; 37: 194-207, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25453950

RESUMO

In normal tissue repair, macrophages exhibit a pro-inflammatory phenotype (M1) at early stages and a pro-healing phenotype (M2) at later stages. We have previously shown that M1 macrophages initiate angiogenesis while M2 macrophages promote vessel maturation. Therefore, we reasoned that scaffolds that promote sequential M1 and M2 polarization of infiltrating macrophages should result in enhanced angiogenesis and healing. To this end, we first analyzed the in vitro kinetics of macrophage phenotype switch using flow cytometry, gene expression, and cytokine secretion analysis. Then, we designed scaffolds for bone regeneration based on modifications of decellularized bone for a short release of interferon-gamma (IFNg) to promote the M1 phenotype, followed by a more sustained release of interleukin-4 (IL4) to promote the M2 phenotype. To achieve this sequential release profile, IFNg was physically adsorbed onto the scaffolds, while IL4 was attached via biotin-streptavidin binding. Interestingly, despite the strong interactions between biotin and streptavidin, release studies showed that biotinylated IL4 was released over 6 days. These scaffolds promoted sequential M1 and M2 polarization of primary human macrophages as measured by gene expression of ten M1 and M2 markers and secretion of four cytokines, although the overlapping phases of IFNg and IL4 release tempered polarization to some extent. Murine subcutaneous implantation model showed increased vascularization in scaffolds releasing IFNg compared to controls. This study demonstrates that scaffolds for tissue engineering can be designed to harness the angiogenic behavior of host macrophages towards scaffold vascularization.


Assuntos
Osso e Ossos/irrigação sanguínea , Polaridade Celular/efeitos dos fármacos , Citocinas/farmacologia , Sistemas de Liberação de Medicamentos , Fatores Imunológicos/farmacologia , Macrófagos/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Alicerces Teciduais/química , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Implantes Experimentais , Cinética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Tela Subcutânea/efeitos dos fármacos , Fatores de Tempo
9.
Biomaterials ; 35(15): 4477-88, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24589361

RESUMO

Angiogenesis is crucial for the success of most tissue engineering strategies. The natural inflammatory response is a major regulator of vascularization, through the activity of different types of macrophages and the cytokines they secrete. Macrophages exist on a spectrum of diverse phenotypes, from "classically activated" M1 to "alternatively activated" M2 macrophages. M2 macrophages, including the subsets M2a and M2c, are typically considered to promote angiogenesis and tissue regeneration, while M1 macrophages are considered to be anti-angiogenic, although these classifications are controversial. Here we show that in contrast to this traditional paradigm, primary human M1 macrophages secrete the highest levels of potent angiogenic stimulators including VEGF; M2a macrophages secrete the highest levels of PDGF-BB, a chemoattractant for stabilizing pericytes, and also promote anastomosis of sprouting endothelial cells in vitro; and M2c macrophages secrete the highest levels of MMP9, an important protease involved in vascular remodeling. In a murine subcutaneous implantation model, porous collagen scaffolds were surrounded by a fibrous capsule, coincident with high expression of M2 macrophage markers, while scaffolds coated with the bacterial lipopolysaccharide were degraded by inflammatory macrophages, and glutaraldehyde-crosslinked scaffolds were infiltrated by substantial numbers of blood vessels, accompanied by high levels of M1 and M2 macrophages. These results suggest that coordinated efforts by both M1 and M2 macrophages are required for angiogenesis and scaffold vascularization, which may explain some of the controversy over which phenotype is the angiogenic phenotype.


Assuntos
Macrófagos/citologia , Neovascularização Fisiológica , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Becaplermina , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-sis/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Biophys J ; 105(8): 1848-59, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24138861

RESUMO

Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent ß-octylglucoside (ßOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with ßOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods.


Assuntos
Detergentes/química , Glucosídeos/química , Glicerídeos/química , Transição de Fase , Fosfatos/química , Sais/química , Cátions , Cristalização , Modelos Lineares , Soluções , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA