Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Plant Commun ; : 100891, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561965

RESUMO

Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.

2.
Gen Comp Endocrinol ; 350: 114472, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373462

RESUMO

Heart development is a delicate and complex process regulated by coordination of various signaling pathways. In this study, we investigated the role of sox18 in heart development by modulating Wnt/ß-Catenin signaling pathways. Our spatiotemporal expression analysis revealed that sox18 is mainly expressed in the heart, branchial arch, pharyngeal arch, spinal cord, and intersegmental vessels at the tailbud stage of Xenopus tropicalis embryo. Overexpression of sox18 in the X. tropicalis embryos causes heart edema, while loss-of-function of sox18 can change the signal of developmental heart marker gata4 at different stages, suggesting that sox18 plays an essential role in the development of the heart. Knockdown of SOX18 in human umbilical vein endothelial cells suggests a link between Sox18 and ß-CATENIN, a key regulator of the Wnt signaling pathway. Sox18 negatively regulates islet1 and tbx3, the downstream factors of Wnt/ß-Catenin signaling, during the linear heart tube formation and the heart looping stage. Taken together, our findings highlight the crucial role of Sox18 in the development of the heart via inhibiting Wnt/ß-Catenin signaling.


Assuntos
Fatores de Transcrição SOXF , Proteínas de Xenopus , beta Catenina , Animais , Humanos , beta Catenina/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Via de Sinalização Wnt , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256121

RESUMO

The human neuroblastoma cell lines SH-SY5Y and IMR-32 can be differentiated into neuron-like phenotypes through treatment with all-trans-retinoic acid (ATRA). After differentiation, these cell lines are extensively utilized as in vitro models to study various aspects of neuronal cell biology. However, temporal and quantitative profiling of the proteome and phosphoproteome of SH-SY5Y and IMR-32 cells throughout ATRA-induced differentiation has been limited. Here, we performed relative quantification of the proteomes and phosphoproteomes of SH-SY5Y and IMR-32 cells at multiple time points during ATRA-induced differentiation. Relative quantification of proteins and phosphopeptides with subsequent gene ontology analysis revealed that several biological processes, including cytoskeleton organization, cell division, chaperone function and protein folding, and one-carbon metabolism, were associated with ATRA-induced differentiation in both cell lines. Furthermore, kinase-substrate enrichment analysis predicted altered activities of several kinases during differentiation. Among these, CDK5 exhibited increased activity, while CDK2 displayed reduced activity. The data presented serve as a valuable resource for investigating temporal protein and phosphoprotein abundance changes in SH-SY5Y and IMR-32 cells during ATRA-induced differentiation.


Assuntos
Células-Tronco Neurais , Neuroblastoma , Humanos , Proteômica , Neurônios , Divisão Celular
5.
Biol Reprod ; 109(4): 482-497, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37471641

RESUMO

As in mammals, ovarian folliculogenesis in teleosts also consists of two phases: the primary growth (PG) and secondary growth (SG) phases, which are analogous to the preantral and antral phases respectively in mammals. In this study, we performed a proteomic analysis on zebrafish follicles undergoing the PG-SG transition aiming to identify factors involved in the event. Numerous proteins showed significant changes, and the most prominent one was Y-box binding protein 1 (YB-1; Ybx1/ybx1), a transcription factor and mRNA-binding protein. YB-1 belongs to the Y-box binding protein family, which also includes the gonad-specific YB-2. Interestingly, phylogenetic analysis showed no YB-2 homolog in zebrafish. Although ybx1 mRNA was expressed in various tissues, its protein Ybx1 was primarily produced in the gonads, similar to YB-2 in other species. In the ovary, Ybx1 protein started to appear in early follicles newly emerged from the germ cell cysts, reached the highest level in late PG oocytes, but decreased precipitously when the follicles entered the SG phase. In PG follicles, Ybx1 might function as a key component of the messenger ribonucleoprotein particles (mRNPs) in association with other RNA-binding proteins. Similar to mammalian YB-1, zebrafish Ybx1 also contains functional signals that determine its intracellular localization. In conclusion, Ybx1 may play dual roles of YB-1 and YB-2 in zebrafish. In the ovary, Ybx1 binds mRNAs to stabilize them while preventing their translation. At PG-SG transition, Ybx1 is removed to release the masked mRNAs for translation into functional proteins, leading to follicle activation.


Assuntos
Ovário , Peixe-Zebra , Animais , Feminino , Mamíferos/genética , Ovário/metabolismo , Filogenia , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Anal Bioanal Chem ; 415(8): 1465-1476, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36656349

RESUMO

Organoid culture is a promising biomedical technology that requires specialized growth factors. Recently, a recombinant L-WRN cell line has been extensively used to generate conditioned medium (L-CM) for organoid culture. Nevertheless, methods for evaluating the stability of the L-WRN cells have been limited. In this study, a novel proteomics-based approach was developed to analyze the secretome of the cells. Serum-free L-CM was lyophilized, precipitated by trichloroacetic acid, and desalted prior to analysis by liquid chromatography-tandem mass spectrometry. Data-dependent acquisition (DDA) was conducted for the untargeted secretome profiling of the cells, and parallel reaction monitoring (PRM) was applied for the targeted quantification of the Wnt3A, R-spondin3, and noggin proteins (WRNs). This study also compared the performance of two types of PRM methods, namely MS1-independent PRM and MS1-dependent PRM, that can be executed on an Orbitrap instrument. The results showed that the growth of mouse intestinal organoids was closely related to the use of L-CM. The composition of L-CM could be markedly affected by the medium collection scheme. A total of 1725, 2302, and 2681 proteins were identified from the L-CM collected on day 5, day 9, and day 13, respectively. The MS1-independent PRM outperformed the MS1-dependent PRM and effectively quantified the WRNs with high repeatability and specificity. In conclusion, by integrating untargeted and targeted proteomics, this study develops a mass spectrometry-based method for the secretome analysis and quality control of the L-WRN cells. The methodology and findings of the present work will benefit future studies on organoids and secretomes.


Assuntos
Proteômica , Secretoma , Animais , Camundongos , Proteômica/métodos , Cromatografia Líquida , Espectrometria de Massas/métodos , Linhagem Celular , Helicase da Síndrome de Werner
7.
Front Cell Dev Biol ; 10: 900321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072338

RESUMO

Cnidarians including sea anemones, corals, hydra, and jellyfishes are a group of animals well known for their regeneration capacity. However, how non-coding RNAs such as microRNAs (also known as miRNAs) contribute to cnidarian tissue regeneration is poorly understood. Here, we sequenced and assembled the genome of the sea anemone Exaiptasia pallida collected in Hong Kong waters. The assembled genome size of E. pallida is 229.21 Mb with a scaffold N50 of 10.58 Mb and BUSCO completeness of 91.1%, representing a significantly improved genome assembly of this species. The organization of ANTP-class homeobox genes in this anthozoan further supported the previous findings in jellyfishes, where most of these genes are mainly located on three scaffolds. Tentacles of E. pallida were excised, and both mRNA and miRNA were sequenced at 9 time points (0 h, 6 h, 12 h, 18 h, 1 day, 2, 3, 6, and 8 days) from regenerating tentacles. In addition to the Wnt signaling pathway and homeobox genes that are shown to be likely involved in tissue regeneration as in other cnidarians, we have shown that GLWamide neuropeptides, and for the first time sesquiterpenoid pathway genes could potentially be involved in the late phase of cnidarian tissue regeneration. The established sea anemone model will be useful for further investigation of biology and evolution in, and the effect of climate change on this important group of animals.

8.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955768

RESUMO

Increasing evidence has revealed that plant secretory peptides are involved in the long-distance signaling pathways that help to regulate plant development and signal stress responses. In this study, we purified small peptides from soybean (Glycine max) xylem sap via o-chlorophenol extraction and conducted an in-depth peptidomic analysis using a mass spectrometry (MS) and bioinformatics approach. We successfully identified 14 post-translationally modified peptide groups belonging to the peptide families CEP (C-terminally encoded peptides), CLE (CLAVATA3/embryo surrounding region-related), PSY (plant peptides containing tyrosine sulfation), and XAP (xylem sap-associated peptides). Quantitative PCR (qPCR) analysis showed unique tissue expression patterns among the peptide-encoding genes. Further qPCR analysis of some of the peptide-encoding genes showed differential stress-response profiles toward various abiotic stress factors. Targeted MS-based quantification of the nitrogen deficiency-responsive peptides, GmXAP6a and GmCEP-XSP1, demonstrated upregulation of peptide translocation in xylem sap under nitrogen-deficiency stress. Quantitative proteomic analysis of GmCEP-XSP1 overexpression in hairy soybean roots revealed that GmCEP-XSP1 significantly impacts stress response-related proteins. This study provides new insights that root-to-shoot peptide signaling plays important roles in regulating plant stress-response mechanisms.


Assuntos
Glycine max , Proteômica , Humanos , Nitrogênio/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Xilema/metabolismo
9.
Allergy ; 77(10): 3041-3051, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35567339

RESUMO

BACKGROUND: Clinical management of shrimp allergy is hampered by the lack of accurate tests. Molecular diagnosis has been shown to more accurately reflect the clinical reactivity but the full spectrum of shrimp allergens and their clinical relevance are yet to be established. We therefore sought to comprehend the allergen repertoire of shrimp, investigate and compare the sensitization pattern and diagnostic value of the allergens in allergic subjects of two distinct populations. METHODS: Sera were collected from 85 subjects with challenge-proven or doctor-diagnosed shrimp allergy in Hong Kong and Thailand. The IgE-binding proteins of Penaeus monodon were probed by Western blotting and identified by mass spectrometry. Recombinant shrimp allergens were synthesized and analyzed for IgE sensitization by ELISA. RESULTS: Ten IgE-binding proteins were identified, and a comprehensive panel of 11 recombinant shrimp allergens was generated. The major shrimp allergens among Hong Kong subjects were troponin C (Pen m 6) and glycogen phosphorylase (Pen m 14, 47.1%), tropomyosin (Pen m 1, 41.2%) and sarcoplasmic-calcium binding protein (Pen m 4, 35.3%), while those among Thai subjects were Pen m 1 (68.8%), Pen m 6 (50.0%) and fatty acid-binding protein (Pen m 13, 37.5%). Component-based tests yielded significantly higher area under curve values (0.77-0.96) than shrimp extract-IgE test (0.70-0.75). Yet the best component test differed between populations; Pen m 1-IgE test added diagnostic value only in the Thai cohort, whereas sensitizations to other components were better predictors of shrimp allergy in Hong Kong patients. CONCLUSION: Pen m 14 was identified as a novel shrimp allergen predictive of challenge outcome. Molecular diagnosis better predicts shrimp allergy than conventional tests, but the relevant component is population dependent.


Assuntos
Hipersensibilidade Alimentar , Hipersensibilidade , Alérgenos , Proteínas de Ligação a Ácido Graxo , Hipersensibilidade Alimentar/diagnóstico , Humanos , Imunoglobulina E , Tropomiosina , Troponina C
10.
Gastroenterology ; 162(1): 179-192.e11, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34425092

RESUMO

BACKGROUND AND AIMS: The enteric nervous system, which regulates many gastrointestinal functions, is derived from neural crest cells (NCCs). Defective NCC migration during embryonic development may lead to enteric neuropathies such as Hirschsprung's disease (hindgut aganglionosis). Sox10 is known to be essential for cell migration but downstream molecular events regulating early NCC migration have not been fully elucidated. This study aimed to determine how Sox10 regulates migration of sacral NCCs toward the hindgut using Dominant megacolon mice, an animal model of Hirschsprung's disease with a Sox10 mutation. METHODS: We used the following: time-lapse live cell imaging to determine the migration defects of mutant sacral NCCs; genome-wide microarrays, site-directed mutagenesis, and whole embryo culture to identify Sox10 targets; and liquid chromatography and tandem mass spectrometry to ascertain downstream effectors of Sox10. RESULTS: Sacral NCCs exhibited retarded migration to the distal hindgut in Sox10-null embryos with simultaneous down-regulated expression of cadherin-19 (Cdh19). Sox10 was found to bind directly to the Cdh19 promoter. Cdh19 knockdown resulted in retarded sacral NCC migration in vitro and ex vivo, whereas re-expression of Cdh19 partially rescued the retarded migration of mutant sacral NCCs in vitro. Cdh19 formed cadherin-catenin complexes, which then bound to filamentous actin of the cytoskeleton during cell migration. CONCLUSIONS: Cdh19 is a direct target of Sox10 during early sacral NCC migration toward the hindgut and forms cadherin-catenin complexes which interact with the cytoskeleton in migrating cells. Elucidation of this novel molecular pathway helps to provide insights into the pathogenesis of enteric nervous system developmental defects.


Assuntos
Caderinas/metabolismo , Movimento Celular , Sistema Nervoso Entérico/metabolismo , Doença de Hirschsprung/metabolismo , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Fatores de Transcrição SOXE/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Animais , Caderinas/genética , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Cultura Embrionária , Sistema Nervoso Entérico/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crista Neural/anormalidades , Células-Tronco Neurais/patologia , Ligação Proteica , Fatores de Transcrição SOXE/genética , Transdução de Sinais , Fatores de Tempo
11.
Cells ; 10(9)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571828

RESUMO

Lymph node metastasis is the most reliable indicator of a poor prognosis for patients with oral tongue cancers. Currently, there are no biomarkers to predict whether a cancer will spread in the future if it has not already spread at the time of diagnosis. The aim of this study was to quantitatively profile the proteomes of extracellular vesicles (EVs) isolated from blood samples taken from patients with oral tongue squamous cell carcinoma with and without lymph node involvement and non-cancer controls. EVs were enriched using size exclusion chromatography (SEC) from pooled plasma samples of patients with non-nodal and nodal oral tongue squamous cell carcinoma (OTSCC) and non-cancer controls. Protein cargo was quantitatively profiled using isobaric labelling (iTRAQ) and two-dimensional high-performance liquid chromatography followed by tandem mass spectrometry. We identified 208 EV associated proteins and, after filtering, generated a short list of 136 proteins. Over 85% of the EV-associated proteins were associated with the GO cellular compartment term "extracellular exosome". Comparisons between non-cancer controls and oral tongue squamous cell carcinoma with and without lymph node involvement revealed 43 unique candidate EV-associated proteins with deregulated expression patterns. The shortlisted EV associated proteins described here may be useful discriminatory biomarkers for differentiating OTSCC with and without nodal disease or non-cancer controls.


Assuntos
Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Metástase Linfática/patologia , Neoplasias Bucais/metabolismo , Proteoma/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias da Língua/metabolismo , Idoso , Feminino , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Proteômica/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias da Língua/patologia
12.
Peptides ; 146: 170643, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34461138

RESUMO

Scorpion venom contains a cocktail of differing peptides and proteins. Previous studies focused on the identification of species-specific components in scorpion venoms, and whether there could be peptides and/or proteins conserved in the venom gland of a scorpion ancestor has been rarely investigated. Here, using a combination of transcriptomic and proteomic approaches, putative conserved toxins from the venom glands of scorpions Liocheles australasiae, Mesobuthus martensii, and Scorpio maurus palmatus were identified and compared. Similar to other studies, more than half of the conserved toxins are predominantly proteins including proteases. On the other hand, unique venom peptides, including ion channel toxins were revealed specifically in the M. martensii. The sodium channel toxin peptides revealed in M. martensii consolidated that scorpions in the Buthidae are able to envenomate their prey wih highly neurotoxic venom. This study suggested that these conserved proteins had already formed part of the arsenal in the venom gland of the common ancestor of scorpions, and likely perform important functional roles in envenomation during scorpion evolution.


Assuntos
Peptídeos/química , Proteômica/métodos , Venenos de Escorpião/química , Escorpiões/metabolismo , Transcriptoma , Sequência de Aminoácidos , Animais , Ontologia Genética , Masculino , Escorpiões/anatomia & histologia , Escorpiões/classificação , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
13.
Antioxidants (Basel) ; 10(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207819

RESUMO

Energy metabolism in plant cells requires a balance between the activities of chloroplasts and mitochondria, as they are the producers and consumers of carbohydrates and reducing equivalents, respectively. Recently, we showed that the overexpression of Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2), a phosphatase dually anchored on the outer membranes of chloroplasts and mitochondria, can boost the plant growth and seed yield of Arabidopsis thaliana by coordinating the activities of both organelles. However, when AtPAP2 is solely overexpressed in chloroplasts, the growth-promoting effects are less optimal, indicating that active mitochondria are required for dissipating excess reducing equivalents from chloroplasts to maintain the optimal growth of plants. It is even more detrimental to plant productivity when AtPAP2 is solely overexpressed in mitochondria. Although these lines contain high level of adenosine triphosphate (ATP), they exhibit low leaf sucrose, low seed yield, and early senescence. These transgenic lines can be useful tools for studying how hyperactive chloroplasts or mitochondria affect the physiology of their counterparts and how they modify cellular metabolism and plant physiology.

14.
J Proteome Res ; 20(9): 4331-4345, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34327993

RESUMO

The heterogeneity of histone H3 proteoforms makes histone H3 top-down analysis challenging. To enhance the detection coverage of the proteoforms, performing liquid chromatography (LC) front-end to mass spectrometry (MS) detection is recommended. Here, using optimized electron-transfer/high-energy collision dissociation (EThcD) parameters, we have conducted a proteoform-spectrum match (PrSM)-level side-by-side comparison of reversed-phase LC-MS (RPLC-MS), "dual-gradient" weak cation-exchange/hydrophilic interaction LC-MS (dual-gradient WCX/HILIC-MS), and "organic-rich" WCX/HILIC-MS on the top-down analyses of H3.1, H3.2, and H4 proteins extracted from a HeLa cell culture. While both dual-gradient WCX/HILIC and organic-rich WCX/HILIC could resolve intact H3 and H4 proteoforms by the number of acetylations, the organic-rich method could enhance the separations of different trimethyl/acetyl near-isobaric H3 proteoforms. In comparison with RPLC-MS, both of the WCX/HILIC-MS methods enhanced the qualities of the H3 PrSMs and remarkably improved the range, reproducibility, and confidence in the identifications of H3 proteoforms.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Cromatografia Líquida , Células HeLa , Histonas/metabolismo , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
15.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526661

RESUMO

The choroid plexus (CP) is an extensively vascularized neuroepithelial tissue that projects into the brain ventricles. The restriction of transepithelial transport across the CP establishes the blood-cerebrospinal fluid (CSF) barrier that is fundamental to the homeostatic regulation of the central nervous system microenvironment. However, the molecular mechanisms that control this process remain elusive. Here we show that the genetic ablation of Sox9 in the hindbrain CP results in a hyperpermeable blood-CSF barrier that ultimately upsets the CSF electrolyte balance and alters CSF protein composition. Mechanistically, SOX9 is required for the transcriptional up-regulation of Col9a3 in the CP epithelium. The reduction of Col9a3 expression dramatically recapitulates the blood-CSF barrier defects of Sox9 mutants. Loss of collagen IX severely disrupts the structural integrity of the epithelial basement membrane in the CP, leading to progressive loss of extracellular matrix components. Consequently, this perturbs the polarized microtubule dynamics required for correct orientation of apicobasal polarity and thereby impedes tight junction assembly in the CP epithelium. Our findings reveal a pivotal cascade of SOX9-dependent molecular events that is critical for construction of the blood-CSF barrier.


Assuntos
Sangue/metabolismo , Polaridade Celular , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/metabolismo , Colágeno Tipo IX/metabolismo , Células Epiteliais/citologia , Fatores de Transcrição SOX9/metabolismo , Animais , Membrana Basal/metabolismo , Colágeno Tipo IX/genética , Eletrólitos/líquido cefalorraquidiano , Células Epiteliais/metabolismo , Epitélio/metabolismo , Matriz Extracelular/metabolismo , Deleção de Genes , Técnicas de Silenciamento de Genes , Camundongos Knockout , Microtúbulos/metabolismo , Junções Íntimas/metabolismo , Transcrição Gênica
16.
Commun Biol ; 4(1): 83, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469163

RESUMO

Whole genome duplication (WGD) has occurred in relatively few sexually reproducing invertebrates. Consequently, the WGD that occurred in the common ancestor of horseshoe crabs ~135 million years ago provides a rare opportunity to decipher the evolutionary consequences of a duplicated invertebrate genome. Here, we present a high-quality genome assembly for the mangrove horseshoe crab Carcinoscorpius rotundicauda (1.7 Gb, N50 = 90.2 Mb, with 89.8% sequences anchored to 16 pseudomolecules, 2n = 32), and a resequenced genome of the tri-spine horseshoe crab Tachypleus tridentatus (1.7 Gb, N50 = 109.7 Mb). Analyses of gene families, microRNAs, and synteny show that horseshoe crabs have undergone three rounds (3R) of WGD. Comparison of C. rotundicauda and T. tridentatus genomes from populations from several geographic locations further elucidates the diverse fates of both coding and noncoding genes. Together, the present study represents a cornerstone for improving our understanding of invertebrate WGD events on the evolutionary fates of genes and microRNAs, at both the individual and population level. We also provide improved genomic resources for horseshoe crabs, of applied value for breeding programs and conservation of this fascinating and unusual invertebrate lineage.


Assuntos
Duplicação Gênica/genética , Caranguejos Ferradura/genética , MicroRNAs/genética , Animais , Evolução Molecular , Genoma/genética , Genômica , Filogenia
17.
Mar Drugs ; 18(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371176

RESUMO

Venomics, the study of biological venoms, could potentially provide a new source of therapeutic compounds, yet information on the venoms from marine organisms, including cnidarians (sea anemones, corals, and jellyfish), is limited. This study identified the putative toxins of two species of jellyfish-edible jellyfish Rhopilema esculentum Kishinouye, 1891, also known as flame jellyfish, and Amuska jellyfish Sanderia malayensis Goette, 1886. Utilizing nano-flow liquid chromatography tandem mass spectrometry (nLC-MS/MS), 3000 proteins were identified from the nematocysts in each of the above two jellyfish species. Forty and fifty-one putative toxins were identified in R. esculentum and S. malayensis, respectively, which were further classified into eight toxin families according to their predicted functions. Amongst the identified putative toxins, hemostasis-impairing toxins and proteases were found to be the most dominant members (>60%). The present study demonstrates the first proteomes of nematocysts from two jellyfish species with economic and environmental importance, and expands the foundation and understanding of cnidarian toxins.


Assuntos
Cnidários/genética , Venenos de Cnidários/genética , Nematocisto , Proteômica/métodos , Animais , Cnidários/química , Venenos de Cnidários/análise , Nematocisto/química , Espectrometria de Massas em Tandem/métodos , Toxinas Biológicas/análise , Toxinas Biológicas/genética
18.
PLoS Biol ; 18(9): e3000636, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32991578

RESUMO

The Myriapoda, composed of millipedes and centipedes, is a fascinating but poorly understood branch of life, including species with a highly unusual body plan and a range of unique adaptations to their environment. Here, we sequenced and assembled 2 chromosomal-level genomes of the millipedes Helicorthomorpha holstii (assembly size = 182 Mb; shortest scaffold/contig length needed to cover 50% of the genome [N50] = 18.11 Mb mainly on 8 pseudomolecules) and Trigoniulus corallinus (assembly size = 449 Mb, N50 = 26.78 Mb mainly on 17 pseudomolecules). Unique genomic features, patterns of gene regulation, and defence systems in millipedes, not observed in other arthropods, are revealed. Both repeat content and intron size are major contributors to the observed differences in millipede genome size. Tight Hox and the first loose ecdysozoan ParaHox homeobox clusters are identified, and a myriapod-specific genomic rearrangement including Hox3 is also observed. The Argonaute (AGO) proteins for loading small RNAs are duplicated in both millipedes, but unlike in insects, an AGO duplicate has become a pseudogene. Evidence of post-transcriptional modification in small RNAs-including species-specific microRNA arm switching-providing differential gene regulation is also obtained. Millipedes possesses a unique ozadene defensive gland unlike the venomous forcipules found in centipedes. We identify sets of genes associated with the ozadene that play roles in chemical defence as well as antimicrobial activity. Macro-synteny analyses revealed highly conserved genomic blocks between the 2 millipedes and deuterostomes. Collectively, our analyses of millipede genomes reveal that a series of unique adaptations have occurred in this major lineage of arthropod diversity. The 2 high-quality millipede genomes provided here shed new light on the conserved and lineage-specific features of millipedes and centipedes. These findings demonstrate the importance of the consideration of both centipede and millipede genomes-and in particular the reconstruction of the myriapod ancestral situation-for future research to improve understanding of arthropod evolution, and animal evolutionary genomics more widely.


Assuntos
Adaptação Biológica/genética , Artrópodes , Evolução Molecular , Genoma/genética , Animais , Artrópodes/classificação , Artrópodes/genética , Sequência de Bases , Elementos de DNA Transponíveis/genética , Genes Homeobox , Genoma de Inseto , Insetos/classificação , Insetos/genética , MicroRNAs/genética , Filogenia , Sintenia
19.
Nat Commun ; 11(1): 3051, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561724

RESUMO

The phylum Cnidaria represents a close outgroup to Bilateria and includes familiar animals including sea anemones, corals, hydroids, and jellyfish. Here we report genome sequencing and assembly for true jellyfish Sanderia malayensis and Rhopilema esculentum. The homeobox gene clusters are characterised by interdigitation of Hox, NK, and Hox-like genes revealing an alternate pathway of ANTP class gene dispersal and an intact three gene ParaHox cluster. The mitochondrial genomes are linear but, unlike in Hydra, we do not detect nuclear copies, suggesting that linear plastid genomes are not necessarily prone to integration. Genes for sesquiterpenoid hormone production, typical for arthropods, are also now found in cnidarians. Somatic and germline cells both express piwi-interacting RNAs in jellyfish revealing a conserved cnidarian feature, and evidence for tissue-specific microRNA arm switching as found in Bilateria is detected. Jellyfish genomes reveal a mosaic of conserved and divergent genomic characters evolved from a shared ancestral genetic architecture.


Assuntos
Genes Homeobox , Família Multigênica , RNA/genética , Cifozoários/genética , Cifozoários/fisiologia , Animais , Biologia do Desenvolvimento , Genoma , Genoma Mitocondrial , Hormônios/genética , MicroRNAs/genética , Mitocôndrias/genética , Filogenia , Plastídeos/genética , RNA Interferente Pequeno/genética , Análise de Sequência de DNA , Especificidade da Espécie , Transcriptoma
20.
Plant Physiol ; 182(3): 1359-1374, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882456

RESUMO

Long non-coding RNAs (lncRNAs) are defined as non-protein-coding transcripts that are at least 200 nucleotides long. They are known to play pivotal roles in regulating gene expression, especially during stress responses in plants. We used a large collection of in-house transcriptome data from various soybean (Glycine max and Glycine soja) tissues treated under different conditions to perform a comprehensive identification of soybean lncRNAs. We also retrieved publicly available soybean transcriptome data that were of sufficient quality and sequencing depth to enrich our analysis. In total, RNA-sequencing data of 332 samples were used for this analysis. An integrated reference-based, de novo transcript assembly was developed that identified ∼69,000 lncRNA gene loci. We showed that lncRNAs are distinct from both protein-coding transcripts and genomic background noise in terms of length, number of exons, transposable element composition, and sequence conservation level across legume species. The tissue-specific and time-specific transcriptional responses of the lncRNA genes under some stress conditions may suggest their biological relevance. The transcription start sites of lncRNA gene loci tend to be close to their nearest protein-coding genes, and they may be transcriptionally related to the protein-coding genes, particularly for antisense and intronic lncRNAs. A previously unreported subset of small peptide-coding transcripts was identified from these lncRNA loci via tandem mass spectrometry, which paved the way for investigating their functional roles. Our results also highlight the present inadequacy of the bioinformatic definition of lncRNA, which excludes those lncRNA gene loci with small open reading frames from being regarded as protein-coding.


Assuntos
Glycine max/genética , RNA Longo não Codificante/genética , Fases de Leitura Aberta/genética , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA