Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Mol Graph Model ; 132: 108837, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39098150

RESUMO

Monkeypox is an infectious disease caused by the monkeypox virus (MPXV), a member of the Orthopoxvirus genus closely related to smallpox. The structure of the A42R profilin-like protein is the first and only available structure among MPXV proteins. Biochemical studies of A42R were conducted in the 1990s and later work also analyzed the protein's function in viral replication in cells. This study aims to screen tripeptides for their potential inhibition of the A42R profilin-like protein using computational methods, with implications for MPXV therapy. A total of 8000 tripeptides underwent molecular docking simulations, resulting in the identification of 20 compounds exhibiting strong binding affinity to A42R. To validate the docking results, molecular dynamics simulations and free energy perturbation calculations were performed. These analyses revealed two tripeptides with sequences TRP-THR-TRP and TRP-TRP-TRP, which displayed robust binding affinity to A42R. Markedly, electrostatic interactions predominated over van der Waals interactions in the binding process between tripeptides and A42R. Three A42R residues, namely Glu9, Ser12, and Arg38, appear to be pivotal in mediating the interaction between A42R and the tripeptide ligands. Notably, tripeptides containing two or three tryptophan residues demonstrate a pronounced binding affinity, with the tripeptide comprising three tryptophan amino acids showing the highest level of affinity. These findings offer valuable insights for the selection of compounds sharing a similar structure and possessing a high affinity for A42R, potentially capable of inhibiting its enzyme activity. The study highlights a structural advantage and paves the way for the development of targeted therapies against MPXV infections.

2.
ACS Omega ; 9(22): 24071-24081, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38854538

RESUMO

An assessment of the free radical scavenging potential of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol (AT) and 4-amino-5-(4-pyridyl)-4H-1,2,4-triazole-3-thiol (AP) involved a combination of experimental methodologies and theoretical calculations. In the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assay, AT exhibited an heightened efficacy in scavenging DPPH• radicals compared to AP. This was evidenced by the notably lower IC50DPPH value observed for AT (1.3 × 10-3 ± 0.2 × 10-3 M) in comparison to AP (2.2 × 10-3 ± 0.1 × 10-3 M). Similarly, in the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS• +) test, AT exhibited superior ability in neutralizing ABTS•+ free radical cations compared to AP, with the computed IC50ABTS values of 4.7 × 10-5 ± 0.1 × 10-5 M for AT and 5.5 × 10-5 ± 0.2 × 10-5 M for AP. Density functional theory served as the tool for evaluating the correlation between structural attributes and the antioxidant efficacy of the studied molecules. The findings highlighted the flexibility of hydrogen atoms within NH and NH2 groups to nucleophilic attacks, indicative of their pivotal role in the scavenging mechanism. Furthermore, investigations into the interactions between AT and AP with the free radical HOO• revealed predominantly the reaction via the hydrogen atom transfer mechanism. Both experimental observations and theoretical deductions collectively affirmed AT's superior free radical scavenging ability over AP in the gas phase and ethanol.

3.
RSC Adv ; 14(27): 18950-18956, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38873542

RESUMO

Influenza A viruses spread out worldwide, causing several global concerns. Hence, discovering neuraminidase inhibitors to prevent the influenza A virus is of great interest. In this work, a machine learning model was employed to evaluate the ligand-binding affinity of ca. 10 000 compounds from the MedChemExpress (MCE) database for inhibiting neuraminidase. Atomistic simulations, including molecular docking and molecular dynamics simulations, then confirmed the ligand-binding affinity. Furthermore, we clarified the physical insights into the binding process of ligands to neuraminidase. It was found that five compounds, including micronomicin, didesmethyl cariprazine, argatroban, Kgp-IN-1, and AY 9944, are able to inhibit neuraminidase N1 of the influenza A virus. Ten residues, including Glu119, Asp151, Arg152, Trp179, Gln228, Glu277, Glu278, Arg293, Asn295, and Tyr402, may be very important in controlling the ligand-binding process to N1.

4.
ACS Omega ; 9(18): 20467-20476, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737022

RESUMO

Molecular and dissociative hydrogen adsorption of transition metal (TM)-doped [Mo3S13]2- atomic clusters were investigated using density functional theory calculations. The introduced TM dopants form stable bonds with S atoms, preserving the geometric structure. The S-TM-S bridging bond emerges as the most stable configuration. The preferred adsorption sites were found to be influenced by various factors, such as the relative electronegativity, coordination number, and charge of the TM atom. Notably, the presence of these TM atoms remarkably improved the hydrogen adsorption activity. The dissociation of a single hydrogen molecule on TM[Mo3S13]2- clusters (TM = Sc, Cr, Mn, Fe, Co, and Ni) is thermodynamically and kinetically favorable compared to their bare counterparts. The extent of favorability monotonically depends on the TM impurity, with a maximum activation barrier energy ranging from 0.62 to 1.58 eV, lower than that of the bare cluster (1.69 eV). Findings provide insights for experimental research on hydrogen adsorption using TM-doped molybdenum sulfide nanoclusters, with potential applications in the field of hydrogen energy.

5.
RSC Adv ; 14(21): 15112-15119, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38720971

RESUMO

The aggregation of amyloid beta (Aß) peptides is associated with the development of Alzheimer's disease (AD). However, there has been a growing belief that the oligomerization of Aß species in different environments has a neurotoxic effect on the patient's brain, causing damage. It is necessary to comprehend the compositions of Aß oligomers in order to develop medications that may effectively inhibit these neurotoxic forms that affect the nervous system of AD patients. Thus, dissociation or inhibition of Aß aggregation may be able to prevent AD. To date, the search for traditional agents and biomolecules has largely been unsuccessful. In this context, nanoparticles have emerged as potential candidates to directly inhibit the formation of Aß oligomers. The oligomerization of the dimeric Aß peptides with or without the influence of a silver nanoparticle was thus investigated using temperature replica-exchange molecular dynamics (REMD) simulations. The physical insights into the dimeric Aß oligomerization were clarified by analyzing intermolecular contact maps, the free energy landscape of the dimeric oligomer, secondary structure terms, etc. The difference in obtained metrics between Aß with or without a silver nanoparticle provides a picture of the influence of silver nanoparticles on the oligomerization process. The underlying mechanisms that are involved in altering Aß oligomerization will be discussed. The obtained results may play an important role in searching for Aß inhibitor pathways.

6.
RSC Adv ; 14(21): 14875-14885, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38720975

RESUMO

Alchemical binding free energy calculations are one of the most accurate methods for estimating ligand-binding affinity. Assessing the accuracy of the approach over protein targets is one of the most interesting issues. The free energy difference of binding between a protein and a ligand was calculated via the alchemical approach. The alchemical approach exhibits satisfactory accuracy over four targets, including AmpC beta-lactamase (AmpC); glutamate receptor, ionotropic kainate 1 (GluK1); heat shock protein 90 (Hsp90); and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). In particular, the correlation coefficients between calculated binding free energies and the respective experiments over four targets range from 0.56 to 0.86. The affinity computed via free energy perturbation (FEP) simulations is overestimated over the experimental value. Particularly, the electrostatic interaction free energy rules the binding process of ligands to AmpC and GluK1. However, the van der Waals (vdW) interaction free energy plays an important role in the ligand-binding processes of HSP90 and SARS-CoV-2 Mpro. The obtained results associate with the hydrophilic or hydrophobic properties of the ligands. This observation may enhance computer-aided drug design.

7.
J Biomol Struct Dyn ; : 1-9, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419271

RESUMO

VP39, an essential 2'-O-RNA methyltransferase enzyme discovered in Monkeypox virus (MPXV), plays a vital role in viral RNA replication and transcription. Inhibition of the enzyme may prevent viral replication. In this context, using a combination of molecular docking and molecular dynamics (MDs) simulations, the inhibitory ability of NCI Diversity Set VII natural compounds to VP39 protein was investigated. It should be noted that the computed binding free energy of ligand via molecular docking and linear interaction energy (LIE) approaches are in good agreement with the corresponding experiments with coefficients of R=0.72 and 0.75, respectively. NSC 319990, NSC 196515 and NSC 376254 compounds were demonstrated that can inhibit MPVX methyltransferase VP39 protein with the similar affinity compared to available inhibitor sinefungin. Moreover, nine residues involving Gln39, Gly68, Gly72, Asp95, Arg97, Val116, Asp138, Arg140 and Asn156 may be argued that they play an important role in binding process of inhibitors to VP39.Communicated by Ramaswamy H. Sarma.

8.
J Chem Inf Model ; 63(14): 4376-4382, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37409844

RESUMO

The folding/misfolding of membrane-permiable Amyloid beta (Aß) peptides is likely associated with the advancing stage of Alzheimer's disease (AD) by disrupting Ca2+ homeostasis. In this context, the aggregation of four transmembrane Aß17-42 peptides was investigated using temperature replica-exchange molecular dynamics (REMD) simulations. The obtained results indicated that the secondary structure of transmembrane Aß peptides tends to have different propensities compared to those in solution. Interestingly, the residues favorably forming ß-structure were interleaved by residues rigidly adopting turn-structure. A combination of ß and turn regions likely forms a pore structure. Six morphologies of 4Aß were found over the free energy landscape and clustering analyses. Among these, the morphologies include (1) Aß binding onto the membrane surface and three transmembrane Aß; (2) three helical and coil transmembrane Aß; (3) four helical transmembrane Aß; (4) three helical and one ß-hairpin transmembrane Aß; (5) two helical and two ß-strand transmembrane Aß; and (6) three ß-strand and one helical transmembrane Aß. Although the formation of the ß-barrel structure was not observed during the 0.28 ms─long MD simulation, the structure is likely to form when the simulation time is further extended.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/química , Simulação de Dinâmica Molecular , Doença de Alzheimer/metabolismo , Estrutura Secundária de Proteína , Conformação Proteica em Folha beta , Fragmentos de Peptídeos/química
9.
J Mol Graph Model ; 124: 108535, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37295158

RESUMO

The first oral drug for the treatment of COVID-19, Paxlovid, has been authorized; however, nirmatrelvir, a major component of the drug, is reported to be associated with some side effects. Moreover, the appearance of many novel variants raises concerns about drug resistance, and designing new potent inhibitors to prevent viral replication is thus urgent. In this context, using a hybrid approach combining machine learning (ML) and free energy simulations, 6 compounds obtained by modifying nirmatrelvir were proposed to bind strongly to SARS-CoV-2 Mpro. The structural modification of nirmatrelvir significantly enhances the electrostatic interaction free energy between the protein and ligand and slightly decreases the vdW term. However, the vdW term is the most important factor in controlling the ligand-binding affinity. In addition, the modified nirmatrelvir might be less toxic to the human body than the original inhibitor.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ligantes , Antivirais/farmacologia
10.
Chem Phys ; 564: 111709, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36188488

RESUMO

Inhibiting the biological activity of SARS-CoV-2 Mpro can prevent viral replication. In this context, a hybrid approach using knowledge- and physics-based methods was proposed to characterize potential inhibitors for SARS-CoV-2 Mpro. Initially, supervised machine learning (ML) models were trained to predict a ligand-binding affinity of ca. 2 million compounds with the correlation on a test set of R = 0.748 ± 0.044 . Atomistic simulations were then used to refine the outcome of the ML model. Using LIE/FEP calculations, nine compounds from the top 100 ML inhibitors were suggested to bind well to the protease with the domination of van der Waals interactions. Furthermore, the binding affinity of these compounds is also higher than that of nirmatrelvir, which was recently approved by the US FDA to treat COVID-19. In addition, the ligands altered the catalytic triad Cys145 - His41 - Asp187, possibly disturbing the biological activity of SARS-CoV-2.

12.
Phys Chem Chem Phys ; 25(1): 878, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36511167

RESUMO

Correction for 'Characterizing the ligand-binding affinity toward SARS-CoV-2 Mpro via physics- and knowledge-based approaches' by Son Tung Ngo et al., Phys. Chem. Chem. Phys., 2022, https://doi.org/10.1039/d2cp04476e.

13.
Phys Chem Chem Phys ; 24(48): 29266-29278, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36449268

RESUMO

Computational approaches, including physics- and knowledge-based methods, have commonly been used to determine the ligand-binding affinity toward SARS-CoV-2 main protease (Mpro or 3CLpro). Strong binding ligands can thus be suggested as potential inhibitors for blocking the biological activity of the protease. In this context, this paper aims to provide a short review of computational approaches that have recently been applied in the search for inhibitor candidates of Mpro. In particular, molecular docking and molecular dynamics (MD) simulations are usually combined to predict the binding affinity of thousands of compounds. Quantitative structure-activity relationship (QSAR) is the least computationally demanding and therefore can be used for large chemical collections of ligands. However, its accuracy may not be high. Moreover, the quantum mechanics/molecular mechanics (QM/MM) method is most commonly used for covalently binding inhibitors, which also play an important role in inhibiting the activity of SARS-CoV-2. Furthermore, machine learning (ML) models can significantly increase the searching space of ligands with high accuracy for binding affinity prediction. Physical insights into the binding process can then be confirmed via physics-based calculations. Integration of ML models into computational chemistry provides many more benefits and can lead to new therapies sooner.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Física , Simulação de Dinâmica Molecular
14.
ACS Omega ; 7(42): 37379-37387, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312417

RESUMO

Increasing interest has been paid for hydrogen adsorption on atomically controlled nanoalloys due to their potential applications in catalytic processes and energy storage. In this work, we investigate the interaction of H2 with small-sized Ag n Cr (n = 1-12) using density functional theory calculations. It is found that the cluster structures are preserved during the adsorption of H2 either molecularly or dissociatively. Ag3Cr-H2, Ag6Cr-H2, and Ag9Cr-H2 clusters are identified to be relatively more stable from computed binding energies and second-order energy difference. The dissociation of adsorbed H2 on Ag2Cr, Ag3Cr, Ag6Cr, and Ag7Cr clusters is favored both thermodynamically and kinetically. The dissociative adsorption is unlikely to occur because of a considerable energy barrier before reaching the final state for Ag4Cr or due to energetic preferences for n = 1, 5, and 8-12 species. Comprehensive analysis shows that the geometric structure of clusters, the relative electronegativity, and the coordination number of the Cr impurity play a decisive role in determining the preferred adsorption configuration.

15.
PeerJ Comput Sci ; 8: e1063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092009

RESUMO

We can find solutions to the team selection problem in many different areas. The problem solver needs to scan across a large array of available solutions during their search. This problem belongs to a class of combinatorial and NP-Hard problems that requires an efficient search algorithm to maintain the quality of solutions and a reasonable execution time. The team selection problem has become more complicated in order to achieve multiple goals in its decision-making process. This study introduces a multiple cross-functional team (CFT) selection model with different skill requirements for candidates who meet the maximum required skills in both deep and wide aspects. We introduced a method that combines a compromise programming (CP) approach and metaheuristic algorithms, including the genetic algorithm (GA) and ant colony optimization (ACO), to solve the proposed optimization problem. We compared the developed algorithms with the MIQP-CPLEX solver on 500 programming contestants with 37 skills and several randomized distribution datasets. Our experimental results show that the proposed algorithms outperformed CPLEX across several assessment aspects, including solution quality and execution time. The developed method also demonstrated the effectiveness of the multi-criteria decision-making process when compared with the multi-objective evolutionary algorithm (MOEA).

16.
J Phys Chem B ; 126(39): 7567-7578, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36137238

RESUMO

Polysaccharide monooxygenases (PMOs) use a type-2 copper center to activate O2 for the selective hydroxylation of one of the two C-H bonds of glycosidic linkages. Our electron paramagnetic resonance (EPR) analysis and molecular dynamics (MD) simulations suggest the unprecedented dynamic roles of the loop containing the residue G89 (G89 loop) on the active site structure and reaction cycle of starch-active PMOs (AA13 PMOs). In the Cu(II) state, the G89 loop could switch between an "open" and "closed" conformation, which is associated with the binding and dissociation of an aqueous ligand in the distal site, respectively. The conformation of the G89 loop influences the positioning of the copper center on the preferred substrate of AA13 PMOs. The dissociation of the distal ligand results in the bending of the T-shaped core of the Cu(II) active site, which could help facilitate its reduction to the active Cu(I) state. In the Cu(I) state, the G89 loop is in the "closed" conformation with a confined copper center, which could allow for efficient O2 binding. In addition, the G89 loop remains in the "closed" conformation in the Cu(II)-superoxo intermediate, which could prevent off-pathway superoxide release via exchange with the distal aqueous ligand. Finally, at the end of the reaction cycle, aqueous ligand binding to the distal site could switch the G89 loop to the "open" conformation and facilitate product release.


Assuntos
Cobre , Oxigenases de Função Mista , Domínio Catalítico , Cobre/química , Ligantes , Oxigenases de Função Mista/química , Oxigênio/química , Polissacarídeos/química , Amido/química , Amido/metabolismo , Superóxidos
17.
J Mol Graph Model ; 115: 108230, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35661591

RESUMO

Acetylcholinesterase (AChE) is one of the most important drug targets for Alzheimer's disease treatment. In this work, a combined approach involving machine-learning (ML) model and atomistic simulations was established to predict the ligand-binding affinity to AChE of the natural compounds from VIETHERB database. The trained ML model was first utilized to rapidly and accurately screen the natural compound database for potential AChE inhibitors. Atomistic simulations including molecular docking and steered-molecular dynamics simulations were then used to confirm the ML outcome. Good agreement between ML and atomistic simulations was observed. Twenty compounds were suggested to be able to inhibit AChE. Especially, four of them including geranylgeranyl diphosphate, 2-phosphoglyceric acid, and 2-carboxy-d-arabinitol 1-phosphate, and farnesyl diphosphate are highly potent inhibitors with sub-nanomolar affinities.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Humanos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
18.
ACS Omega ; 7(24): 20673-20682, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35755364

RESUMO

Acetylcholinesterase (AChE) is one of the most important drug targets for Alzheimer's disease (AD) treatment. In this work, a machine learning model was trained to rapidly and accurately screen large chemical databases for the potential inhibitors of AChE. The obtained results were then validated via in vitro enzyme assay. Moreover, atomistic simulations including molecular docking and molecular dynamics simulations were then used to understand molecular insights into the binding process of ligands to AChE. In particular, two compounds including benzyl trifluoromethyl ketone and trifluoromethylstyryl ketone were indicated as highly potent inhibitors of AChE because they established IC50 values of 0.51 and 0.33 µM, respectively. The obtained IC50 of two compounds is significantly lower than that of galantamine (2.10 µM). The predicted log(BB) suggests that the compounds may be able to traverse the blood-brain barrier. A good agreement between computational and experimental studies was observed, indicating that the hybrid approach can enhance AD therapy.

19.
RSC Adv ; 12(6): 3729-3737, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425393

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been causing the COVID-19 pandemic, resulting in several million deaths being reported. Numerous investigations have been carried out to discover a compound that can inhibit the biological activity of the SARS-CoV-2 main protease, which is an enzyme related to the viral replication. Among these, PF-07321332 (Nirmatrelvir) is currently under clinical trials for COVID-19 therapy. Therefore, in this work, atomistic and electronic simulations were performed to unravel the binding and covalent inhibition mechanism of the compound to Mpro. Initially, 5 µs of steered-molecular dynamics simulations were carried out to evaluate the ligand-binding process to SARS-CoV-2 Mpro. The successfully generated bound state between the two molecules showed the important role of the PF-07321332 pyrrolidinyl group and the residues Glu166 and Gln189 in the ligand-binding process. Moreover, from the MD-refined structure, quantum mechanics/molecular mechanics (QM/MM) calculations were carried out to unravel the reaction mechanism for the formation of the thioimidate product from SARS-CoV-2 Mpro and the PF-07321332 inhibitor. We found that the catalytic triad Cys145-His41-Asp187 of SARS-CoV-2 Mpro plays an important role in the activation of the PF-07321332 covalent inhibitor, which renders the deprotonation of Cys145 and, thus, facilitates further reaction. Our results are definitely beneficial for a better understanding of the inhibition mechanism and designing new effective inhibitors for SARS-CoV-2 Mpro.

20.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209177

RESUMO

Alzheimer's disease displays aggregates of the amyloid-beta (Aß) peptide in the brain, and there is increasing evidence that cholesterol may contribute to the pathogenesis of the disease. Though many experimental and theoretical studies have focused on the interactions of Aß oligomers with membrane models containing cholesterol, an understanding of the effect of free cholesterol on small Aß42 oligomers is not fully established. To address this question, we report on replica exchange with a solute tempering simulation of an Aß42 trimer with cholesterol and compare it with a previous replica exchange molecular dynamics simulation. We show that the binding hot spots of cholesterol are rather complex, involving hydrophobic residues L17-F20 and L30-M35 with a non-negligible contribution of loop residues D22-K28 and N-terminus residues. We also examine the effects of cholesterol on the trimers of the disease-causing A21G and disease-protective A2T mutations by molecular dynamics simulations. We show that these two mutations moderately impact cholesterol-binding modes. In our REST2 simulations, we find that cholesterol is rarely inserted into aggregates but rather attached as dimers and trimers at the surface of Aß42 oligomers. We propose that cholesterol acts as a glue to speed up the formation of larger aggregates; this provides a mechanistic link between cholesterol and Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/química , Colesterol/química , Proteínas Mutantes/química , Fragmentos de Peptídeos/química , Multimerização Proteica , Sequência de Aminoácidos , Colesterol/farmacologia , Concentração de Íons de Hidrogênio , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA