Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Microbiol ; 8(12): 2365-2377, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996707

RESUMO

Malaria results in over 600,000 deaths annually, with the highest burden of deaths in young children living in sub-Saharan Africa. Molecular surveillance can provide important information for malaria control policies, including detection of antimalarial drug resistance. However, genome sequencing capacity in malaria-endemic countries is limited. We designed and implemented an end-to-end workflow to detect Plasmodium falciparum antimalarial resistance markers and diversity in the vaccine target circumsporozoite protein (csp) using nanopore sequencing in Ghana. We analysed 196 clinical samples and showed that our method is rapid, robust, accurate and straightforward to implement. Importantly, our method could be applied to dried blood spot samples, which are readily collected in endemic settings. We report that P. falciparum parasites in Ghana are mostly susceptible to chloroquine, with persistent sulfadoxine-pyrimethamine resistance and no evidence of artemisinin resistance. Multiple single nucleotide polymorphisms were identified in csp, but their significance is uncertain. Our study demonstrates the feasibility of nanopore sequencing for malaria genomic surveillance in endemic countries.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Sequenciamento por Nanoporos , Criança , Humanos , Pré-Escolar , Plasmodium falciparum/genética , Gana/epidemiologia , Antimaláricos/farmacologia , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Resistência a Medicamentos/genética
2.
Sci Transl Med ; 15(682): eabn5993, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36753561

RESUMO

Natural killer (NK) cells are potent immune effectors that can be activated via antibody-mediated Fc receptor engagement. Using multiparameter flow cytometry, we found that NK cells degranulate and release IFN-γ upon stimulation with antibody-opsonized Plasmodium falciparum merozoites. Antibody-dependent NK (Ab-NK) activity was largely strain transcending and enhanced invasion inhibition into erythrocytes. Ab-NK was associated with the successful control of parasitemia after experimental malaria challenge in African adults. In an independent cohort study in children, Ab-NK increased with age, was boosted by concurrent P. falciparum infections, and was associated with a lower risk of clinical episodes of malaria. Nine of the 14 vaccine candidates tested induced Ab-NK, including some less well-characterized antigens: P41, P113, MSP11, RHOPH3, and Pf_11363200. These data highlight an important role of Ab-NK activity in immunity against malaria and provide a potential mechanism for evaluating vaccine candidates.


Assuntos
Malária Falciparum , Malária , Criança , Adulto , Animais , Humanos , Antígenos de Protozoários , Estudos de Coortes , Merozoítos , Anticorpos Antiprotozoários , Plasmodium falciparum , Células Matadoras Naturais
3.
Malar J ; 21(1): 192, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725456

RESUMO

BACKGROUND: High levels of genetic diversity are common characteristics of Plasmodium falciparum parasite populations in high malaria transmission regions. There has been a decline in malaria transmission intensity over 12 years of surveillance in the community in Kilifi, Kenya. This study sought to investigate whether there was a corresponding reduction in P. falciparum genetic diversity, using msp2 as a genetic marker. METHODS: Blood samples were obtained from children (< 15 years) enrolled into a cohort with active weekly surveillance between 2007 and 2018 in Kilifi, Kenya. Asymptomatic infections were defined during the annual cross-sectional blood survey and the first-febrile malaria episode was detected during the weekly follow-up. Parasite DNA was extracted and successfully genotyped using allele-specific nested polymerase chain reactions for msp2 and capillary electrophoresis fragment analysis. RESULTS: Based on cross-sectional surveys conducted in 2007-2018, there was a significant reduction in malaria prevalence (16.2-5.5%: P-value < 0.001), however msp2 genetic diversity remained high. A high heterozygosity index (He) (> 0.95) was observed in both asymptomatic infections and febrile malaria over time. About 281 (68.5%) asymptomatic infections were polyclonal (> 2 variants per infection) compared to 46 (56%) polyclonal first-febrile infections. There was significant difference in complexity of infection (COI) between asymptomatic 2.3 [95% confidence interval (CI) 2.2-2.5] and febrile infections 2.0 (95% CI 1.7-2.3) (P = 0.016). Majority of asymptomatic infections (44.2%) carried mixed alleles (i.e., both FC27 and IC/3D7), while FC27 alleles were more frequent (53.3%) among the first-febrile infections. CONCLUSIONS: Plasmodium falciparum infections in Kilifi are still highly diverse and polyclonal, despite the reduction in malaria transmission in the community.


Assuntos
Malária Falciparum , Plasmodium falciparum , Antígenos de Protozoários/genética , Infecções Assintomáticas/epidemiologia , Criança , Estudos Transversais , Febre , Variação Genética , Genótipo , Humanos , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
4.
Nat Commun ; 13(1): 2494, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523782

RESUMO

The COVID-19 pandemic is one of the fastest evolving pandemics in recent history. As such, the SARS-CoV-2 viral evolution needs to be continuously tracked. This study sequenced 1123 SARS-CoV-2 genomes from patient isolates (121 from arriving travellers and 1002 from communities) to track the molecular evolution and spatio-temporal dynamics of the SARS-CoV-2 variants in Ghana. The data show that initial local transmission was dominated by B.1.1 lineage, but the second wave was overwhelmingly driven by the Alpha variant. Subsequently, an unheralded variant under monitoring, B.1.1.318, dominated transmission from April to June 2021 before being displaced by Delta variants, which were introduced into community transmission in May 2021. Mutational analysis indicated that variants that took hold in Ghana harboured transmission enhancing and immune escape spike substitutions. The observed rapid viral evolution demonstrates the potential for emergence of novel variants with greater mutational fitness as observed in other parts of the world.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genoma Viral/genética , Gana/epidemiologia , Humanos , Mutação , Pandemias , Filogenia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
5.
EClinicalMedicine ; 47: 101403, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35497062

RESUMO

Background: Environmental Enteric Dysfunction (EED) is a chronic intestinal inflammatory disorder of unclear aetiology prevalent amongst children in low-income settings and associated with stunting. We aimed to characterise development of EED and its putative risk factors amongst rural Kenyan infants. Methods: In a birth cohort study in Junju, rural coastal Kenya, between August 2015 and January 2017, 100 infants were each followed for nine months. Breastfeeding status was recorded weekly and anthropometry monthly. Acute illnesses and antibiotics were captured by active and passive surveillance. Intestinal function and small intestinal bacterial overgrowth (SIBO) were assessed by monthly urinary lactulose mannitol (LM) and breath hydrogen tests. Faecal alpha-1-antitrypsin, myeloperoxidase and neopterin were measured as EED biomarkers, and microbiota composition assessed by 16S sequencing. Findings: Twenty nine of the 88 participants (33%) that underwent length measurement at nine months of age were stunted (length-for-age Z score <-2). During the rainy season, linear growth was slower and LM ratio was higher. In multivariable models, LM ratio, myeloperoxidase and neopterin increased after cessation of continuous-since-birth exclusive breastfeeding. For LM ratio this only occurred during the rainy season. EED markers were not associated with antibiotics, acute illnesses, SIBO, or gut microbiota diversity. Microbiota diversified with age and was not strongly associated with complementary food introduction or linear growth impairment. Interpretation: Our data suggest that intensified promotion of uninterrupted exclusive breastfeeding amongst infants under six months during the rainy season, where rainfall is seasonal, may help prevent EED. Our findings also suggest that therapeutic strategies directed towards SIBO are unlikely to impact on EED in this setting. However, further development of non-invasive diagnostic methods for SIBO is required. Funding: This research was funded in part by the Wellcome Trust (Research Training Fellowship to RJC (103376/Z/13/Z)). EPKP was supported by the MRC/DfID Newton Fund (MR/N006259/1). JAB was supported by the MRC/DFiD/Wellcome Trust Joint Global Health Trials scheme (MR/M007367/1) and the Bill & Melinda Gates Foundation (OPP1131320). HHU was supported by the NIHR Oxford Biomedical Research Centre (IS-BRC-1215-20008).

6.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34264864

RESUMO

BACKGROUNDNaturally acquired immunity to malaria is incompletely understood. We used controlled human malaria infection (CHMI) to study the impact of past exposure on malaria in Kenyan adults in relation to infection with a non-Kenyan parasite strain.METHODSWe administered 3.2 × 103 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (Sanaria PfSPZ Challenge, NF54 West African strain) by direct venous inoculation and undertook clinical monitoring and serial quantitative PCR (qPCR) of the 18S ribosomal RNA gene. The study endpoint was met when parasitemia reached 500 or more parasites per µL blood, clinically important symptoms were seen, or at 21 days after inoculation. All volunteers received antimalarial drug treatment upon meeting the endpoint.RESULTSOne hundred and sixty-one volunteers underwent CHMI between August 4, 2016, and February 14, 2018. CHMI was well tolerated, with no severe or serious adverse events. Nineteen volunteers (11.8%) were excluded from the analysis based on detection of antimalarial drugs above the minimal inhibitory concentration or parasites genotyped as non-NF54. Of the 142 volunteers who were eligible for analysis, 26 (18.3%) had febrile symptoms and were treated; 30 (21.1%) reached 500 or more parasites per µL and were treated; 53 (37.3%) had parasitemia without meeting thresholds for treatment; and 33 (23.2%) remained qPCR negative.CONCLUSIONWe found that past exposure to malaria, as evidenced by location of residence, in some Kenyan adults can completely suppress in vivo growth of a parasite strain originating from outside Kenya.TRIAL REGISTRATIONClinicalTrials.gov NCT02739763.FUNDINGWellcome Trust.


Assuntos
Imunidade Adaptativa/genética , DNA de Protozoário/análise , Malária Falciparum/genética , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase/métodos , Adulto , Idoso , Animais , Feminino , Seguimentos , Humanos , Incidência , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Estudos Retrospectivos
7.
Exp Biol Med (Maywood) ; 246(8): 960-970, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33325750

RESUMO

The confirmed case fatality rate for the coronavirus disease 2019 (COVID-19) in Ghana has dropped from a peak of 2% in March to be consistently below 1% since May 2020. Globally, case fatality rates have been linked to the strains/clades of circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific country. Here we present 46 whole genomes of SARS-CoV-2 circulating in Ghana, from two separate sequencing batches: 15 isolates from the early epidemic (March 12-April 1 2020) and 31 from later time-points ( 25-27 May 2020). Sequencing was carried out on an Illumina MiSeq system following an amplicon-based enrichment for SARS-CoV-2 cDNA. After genome assembly and quality control processes, phylogenetic analysis showed that the first batch of 15 genomes clustered into five clades: 19A, 19B, 20A, 20B, and 20C, whereas the second batch of 31 genomes clustered to only three clades 19B, 20A, and 20B. The imported cases (6/46) mapped to circulating viruses in their countries of origin, namely, India, Hungary, Norway, the United Kingdom, and the United States of America. All genomes mapped to the original Wuhan strain with high similarity (99.5-99.8%). All imported strains mapped to the European superclade A, whereas 5/9 locally infected individuals harbored the B4 clade, from the East Asian superclade B. Ghana appears to have 19B and 20B as the two largest circulating clades based on our sequence analyses. In line with global reports, the D614G linked viruses seem to be predominating. Comparison of Ghanaian SARS-CoV-2 genomes with global genomes indicates that Ghanaian strains have not diverged significantly from circulating strains commonly imported into Africa. The low level of diversity in our genomes may indicate lower levels of transmission, even for D614G viruses, which is consistent with the relatively low levels of infection reported in Ghana.


Assuntos
Evolução Molecular , Genoma Viral , Filogenia , SARS-CoV-2/genética , COVID-19/epidemiologia , Gana/epidemiologia , Humanos , SARS-CoV-2/patogenicidade
8.
Virus Evol ; 6(2): veaa050, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32913665

RESUMO

Respiratory syncytial virus (RSV) circulates worldwide, occurring seasonally in communities, and is a leading cause of acute respiratory illness in young children. There is paucity of genomic data from purposively sampled populations by which to investigate evolutionary dynamics and transmission patterns of RSV. Here we present an analysis of 295 RSV group B (RSVB) genomes from Kilifi, coastal Kenya, sampled from individuals seeking outpatient care in nine health facilities across a defined geographical area (∼890 km2), over two RSV epidemics between 2015 and 2017. RSVB diversity was characterized by multiple virus introductions into the area and co-circulation of distinct genetic clusters, which transmitted and diversified locally with varying frequency. Increase in relative genetic diversity paralleled seasonal virus incidence. Importantly, we identified a cluster of viruses that emerged in the 2016/17 epidemic, carrying distinct amino-acid signatures including a novel nonsynonymous change (K68Q) in antigenic site ∅ in the Fusion protein. RSVB diversity was additionally marked by signature nonsynonymous substitutions that were unique to particular genomic clusters, some under diversifying selection. Our findings provide insights into recent evolutionary and epidemiological behaviors of RSVB, and highlight possible emergence of a novel antigenic variant, which has implications on current prophylactic strategies in development.

9.
Influenza Other Respir Viruses ; 14(3): 320-330, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943817

RESUMO

BACKGROUND: Influenza viruses evolve rapidly and undergo immune driven selection, especially in the hemagglutinin (HA) protein. We report amino acid changes affecting antigenic epitopes and receptor-binding sites of A(H3N2) viruses circulating in Kilifi, Kenya, from 2009 to 2017. METHODS: Next-generation sequencing (NGS) was used to generate A(H3N2) virus genomic data from influenza-positive specimens collected from hospital admissions and health facility outpatients presenting with acute respiratory illness to health facilities within the Kilifi Health and Demographic Surveillance System. Full-length HA sequences were utilized to characterize A(H3N2) virus genetic and antigenic changes. RESULTS: From 186 (90 inpatient and 96 outpatient) influenza A virus-positive specimens processed, 101 A(H3N2) virus whole genomes were obtained. Among viruses identified in inpatient specimens from 2009 to 2015, divergence of circulating A(H3N2) viruses from the vaccine strains A/Perth/16/2009, A/Texas/50/2012, and A/Switzerland/9715293/2013 formed 6 genetic clades (A/Victoria/208/2009-like, 3B, 3C, 3C.2a, 4, and 7). Among viruses identified in outpatient specimens from 2015 to 2017, divergence of circulating A(H3N2) viruses from vaccine strain A/Hong Kong/4801/2014 formed clade 3C.2a, subclades 3C.2a2 and 3C.2a3, and subgroup 3C.2a1b. Several amino acid substitutions were associated with the continued genetic evolution of A(H3N2) strains in circulation. CONCLUSIONS: Our results suggest continuing evolution of currently circulating A(H3N2) viruses in Kilifi, coastal Kenya and suggest the need for continuous genetic and antigenic viral surveillance of circulating seasonal influenza viruses with broad geographic representation to facilitate prompt and efficient selection of influenza strains for inclusion in future influenza vaccines.


Assuntos
Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Substituição de Aminoácidos , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Lactente , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Quênia/epidemiologia , Masculino , Pessoa de Meia-Idade , Filogenia , Alinhamento de Sequência , Adulto Jovem
10.
Virus Evol ; 6(2): veaa045, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33747542

RESUMO

The genomic epidemiology of influenza B virus (IBV) remains understudied in Africa despite significance to design of effective local and global control strategies. We undertook surveillance throughout 2016 in coastal Kenya, recruiting individuals presenting with acute respiratory illness at nine outpatient health facilities (any age) or admitted to the Kilifi County Hospital (<5 years old). Whole genomes were sequenced for a selected 111 positives; 94 (84.7%) of B/Victoria lineage and 17 (15.3%) of B/Yamagata lineage. Inter-lineage reassortment was detected in ten viruses; nine with B/Yamagata backbone but B/Victoria NA and NP segments and one with a B/Victoria backbone but B/Yamagata PB2, PB1, PA, and MP segments. Five phylogenomic clusters were identified among the sequenced viruses; (i), pure B/Victoria clade 1A (n = 93, 83.8%), (ii), reassortant B/Victoria clade 1A (n = 1, 0.9%), (iii), pure B/Yamagata clade 2 (n = 2, 1.8%), (iv), pure B/Yamagata clade 3 (n = 6, 5.4%), and (v), reassortant B/Yamagata clade 3 (n = 9, 8.1%). Using divergence dates and clustering patterns in the presence of global background sequences, we counted up to twenty-nine independent IBV strain introductions into the study area (∼900 km2) in 2016. Local viruses, including the reassortant B/Yamagata strains, clustered closely with viruses from neighbouring Tanzania and Uganda. Our study demonstrated that genomic analysis provides a clearer picture of locally circulating IBV diversity. The high number of IBV introductions highlights the challenge in controlling local influenza epidemics by targeted approaches, for example, sub-population vaccination or patient quarantine. The finding of divergent IBV strains co-circulating within a single season emphasises why broad immunity vaccines are the most ideal for influenza control in Kenya.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30701251

RESUMO

Dengue infection remains poorly characterized in Africa and little is known regarding its associated viral genetic diversity. Here, we report dengue virus type 2 (DENV-2) sequence data from 10 clinical samples, including 5 complete genome sequences of the cosmopolitan genotype, obtained from febrile adults seeking outpatient care in coastal Kenya.

12.
Nat Ecol Evol ; 2(2): 377-387, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255304

RESUMO

Success in eliminating malaria will depend on whether parasite evolution outpaces control efforts. Here, we show that Plasmodium falciparum parasites (the deadliest of the species causing human malaria) found in low-transmission-intensity areas have evolved to invest more in transmission to new hosts (reproduction) and less in within-host replication (growth) than parasites found in high-transmission areas. At the cellular level, this adaptation manifests as increased production of reproductive forms (gametocytes) early in the infection at the expense of processes associated with multiplication inside red blood cells, especially membrane transport and protein trafficking. At the molecular level, this manifests as changes in the expression levels of genes encoding epigenetic and translational machinery. Specifically, expression levels of the gene encoding AP2-G-the transcription factor that initiates reproduction-increase as transmission intensity decreases. This is accompanied by downregulation and upregulation of genes encoding HDAC1 and HDA1-two histone deacetylases that epigenetically regulate the parasite's replicative and reproductive life-stage programmes, respectively. Parasites in reproductive mode show increased reliance on the prokaryotic translation machinery found inside the plastid-derived organelles. Thus, our dissection of the parasite's adaptive regulatory architecture has identified new potential molecular targets for malaria control.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Malária Falciparum/transmissão , Plasmodium falciparum/fisiologia , Adaptação Fisiológica , Perfilação da Expressão Gênica , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Nat Commun ; 8(1): 1133, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074880

RESUMO

A detailed understanding of the human infectious reservoir is essential for improving malaria transmission-reducing interventions. Here we report a multi-regional assessment of population-wide malaria transmission potential based on 1209 mosquito feeding assays in endemic areas of Burkina Faso and Kenya. Across both sites, we identified 39 infectious individuals. In high endemicity settings, infectious individuals were identifiable by research-grade microscopy (92.6%; 25/27), whilst one of three infectious individuals in the lowest endemicity setting was detected by molecular techniques alone. The percentages of infected mosquitoes in the different surveys ranged from 0.05 (4/7716) to 1.6% (121/7749), and correlate positively with transmission intensity. We also estimated exposure to malaria vectors through genetic matching of blood from 1094 wild-caught bloodfed mosquitoes with that of humans resident in the same houses. Although adults transmitted fewer parasites to mosquitoes than children, they received more mosquito bites, thus balancing their contribution to the infectious reservoir.


Assuntos
Anopheles/parasitologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Mosquitos Vetores/parasitologia , Plasmodium falciparum/fisiologia , Adolescente , Adulto , Animais , Burkina Faso/epidemiologia , Criança , Pré-Escolar , Doenças Endêmicas , Feminino , Interações Hospedeiro-Parasita , Humanos , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Masculino
14.
J Infect Dis ; 216(9): 1091-1098, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28973672

RESUMO

Background: Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. Methods: We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Results: Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Conclusion: Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls.


Assuntos
Infecções Assintomáticas/epidemiologia , Testes Diagnósticos de Rotina , Surtos de Doenças/prevenção & controle , Malária/diagnóstico , Microscopia , Reação em Cadeia da Polimerase , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Malária/epidemiologia , Masculino , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA