Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 308, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302456

RESUMO

Cell-surface receptors play pivotal roles in many biological processes, including immunity, development, and reproduction, across diverse organisms. How cell-surface receptors evolve to become specialised in different biological processes remains elusive. To shed light on the immune-specificity of cell-surface receptors, we analyzed more than 200,000 genes encoding cell-surface receptors from 350 genomes and traced the evolutionary origin of immune-specific leucine-rich repeat receptor-like proteins (LRR-RLPs) in plants. Surprisingly, we discovered that the motifs crucial for co-receptor interaction in LRR-RLPs are closely related to those of the LRR-receptor-like kinase (RLK) subgroup Xb, which perceives phytohormones and primarily governs growth and development. Functional characterisation further reveals that LRR-RLPs initiate immune responses through their juxtamembrane and transmembrane regions, while LRR-RLK-Xb members regulate development through their cytosolic kinase domains. Our data suggest that the cell-surface receptors involved in immunity and development share a common origin. After diversification, their ectodomains, juxtamembrane, transmembrane, and cytosolic regions have either diversified or stabilised to recognise diverse ligands and activate differential downstream responses. Our work reveals a mechanism by which plants evolve to perceive diverse signals to activate the appropriate responses in a rapidly changing environment.


Assuntos
Evolução Biológica , Plantas , Plantas/genética , Receptores Imunológicos/genética , Filogenia , Receptores de Reconhecimento de Padrão/genética
2.
Proc Natl Acad Sci U S A ; 120(11): e2210406120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877846

RESUMO

Plant disease resistance involves both detection of microbial molecular patterns by cell-surface pattern recognition receptors and detection of pathogen effectors by intracellular NLR immune receptors. NLRs are classified as sensor NLRs, involved in effector detection, or helper NLRs required for sensor NLR signaling. TIR-domain-containing sensor NLRs (TNLs) require helper NLRs NRG1 and ADR1 for resistance, and helper NLR activation of defense requires the lipase-domain proteins EDS1, SAG101, and PAD4. Previously, we found that NRG1 associates with EDS1 and SAG101 in a TNL activation-dependent manner [X. Sun et al., Nat. Commun. 12, 3335 (2021)]. We report here how the helper NLR NRG1 associates with itself and with EDS1 and SAG101 during TNL-initiated immunity. Full immunity requires coactivation and mutual potentiation of cell-surface and intracellular immune receptor-initiated signaling [B. P. M. Ngou, H.-K. Ahn, P. Ding, J. D. G. Jones, Nature 592, 110-115 (2021), M. Yuan et al., Nature 592, 105-109 (2021)]. We find that while activation of TNLs is sufficient to promote NRG1-EDS1-SAG101 interaction, the formation of an oligomeric NRG1-EDS1-SAG101 resistosome requires the additional coactivation of cell-surface receptor-initiated defense. These data suggest that NRG1-EDS1-SAG101 resistosome formation in vivo is part of the mechanism that links intracellular and cell-surface receptor signaling pathways.


Assuntos
Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Receptores Imunológicos , Membrana Celular , Lipase , Receptores Imunológicos/genética
3.
Nat Plants ; 8(10): 1146-1152, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36241733

RESUMO

Recent reports suggest that cell-surface and intracellular immune receptors function synergistically to activate robust defence against pathogens, but whether they co-evolve is unclear. Here we determined the numbers of cell-surface and intracellular immune receptors in 350 species. Surprisingly, the number of receptor genes that are predicted to encode cell-surface and intracellular immune receptors is strongly correlated. We suggest this is consistent with mutual potentiation of immunity initiated by cell-surface and intracellular receptors being reflected in the concerted co-evolution of the size of their repertoires across plant species.


Assuntos
Genoma de Planta , Plantas
4.
Essays Biochem ; 66(5): 501-511, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35762737

RESUMO

Plants utilise cell-surface immune receptors (functioning as pattern recognition receptors, PRRs) and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) to detect pathogens. Perception of pathogens by these receptors activates immune signalling and resistance to infections. PRR- and NLR-mediated immunity have primarily been considered parallel processes contributing to disease resistance. Recent studies suggest that these two pathways are interdependent and converge at multiple nodes. This review summarises and provides a perspective on these convergent points.


Assuntos
Proteínas NLR , Imunidade Vegetal , Leucina , Proteínas NLR/metabolismo , Nucleotídeos , Receptores de Reconhecimento de Padrão/metabolismo
5.
Plant Cell ; 34(5): 1447-1478, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35167697

RESUMO

Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.


Assuntos
Imunidade Vegetal , Receptores de Reconhecimento de Padrão , Produtos Agrícolas/metabolismo , Imunidade Inata/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais/genética
6.
Trends Plant Sci ; 27(3): 255-273, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34548213

RESUMO

Plants have both cell-surface and intracellular receptors to recognize diverse self- and non-self molecules. Cell-surface pattern recognition receptors (PRRs) recognize extracellular pathogen-/damage-derived molecules or apoplastic pathogen-derived effectors. Intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) recognize pathogen effectors. Activation of both PRRs and NLRs elevates defense gene expression and accumulation of the phytohormone salicylic acid (SA), which results in SA-dependent transcriptional reprogramming. These receptors, together with their coreceptors, form networks to mediate downstream immune responses. In addition, cell-surface and intracellular immune systems are interdependent and function synergistically to provide robust resistance against pathogens. Here, we summarize the interactions between these immune systems and attempt to provide a holistic picture of plant immune networks. We highlight current challenges and discuss potential new research directions.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Doenças das Plantas/genética , Imunidade Vegetal/genética , Plantas/genética , Receptores de Reconhecimento de Padrão/genética
7.
J Exp Bot ; 72(22): 7927-7941, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34387350

RESUMO

Activation of cell-surface and intracellular receptor-mediated immunity results in rapid transcriptional reprogramming that underpins disease resistance. However, the mechanisms by which co-activation of both immune systems lead to transcriptional changes are not clear. Here, we combine RNA-seq and ATAC-seq to define changes in gene expression and chromatin accessibility. Activation of cell-surface or intracellular receptor-mediated immunity, or both, increases chromatin accessibility at induced defence genes. Analysis of ATAC-seq and RNA-seq data combined with publicly available information on transcription factor DNA-binding motifs enabled comparison of individual gene regulatory networks activated by cell-surface or intracellular receptor-mediated immunity, or by both. These results and analyses reveal overlapping and conserved transcriptional regulatory mechanisms between the two immune systems.


Assuntos
Cromatina , Redes Reguladoras de Genes , Resistência à Doença , Humanos , Fatores de Transcrição/genética
8.
Cell ; 184(13): 3358-3360, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34171318

RESUMO

Plant intracellular NLR proteins detect pathogen effectors and then form multimeric protein complexes ("resistosomes") that activate immune responses and cell death through unknown mechanisms. In this issue of Cell, Bi et al. show that the ZAR1 resistosome exhibits cation channel activity, enabling calcium influx that activates defense mechanisms and culminates in cell death.


Assuntos
Proteínas NLR , Imunidade Vegetal , Morte Celular , Plantas , Transdução de Sinais
9.
Nature ; 592(7852): 110-115, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33692545

RESUMO

The plant immune system involves cell-surface receptors that detect intercellular pathogen-derived molecules, and intracellular receptors that activate immunity upon detection of pathogen-secreted effector proteins that act inside the plant cell. Immunity mediated by surface receptors has been extensively studied1, but that mediated by intracellular receptors has rarely been investigated in the absence of surface-receptor-mediated immunity. Furthermore, interactions between these two immune pathways are poorly understood. Here, by activating intracellular receptors without inducing surface-receptor-mediated immunity, we analyse interactions between these two distinct immune systems in Arabidopsis. Pathogen recognition by surface receptors activates multiple protein kinases and NADPH oxidases, and we find that intracellular receptors primarily potentiate the activation of these proteins by increasing their abundance through several mechanisms. Likewise, the hypersensitive response that depends on intracellular receptors is strongly enhanced by the activation of surface receptors. Activation of either immune system alone is insufficient to provide effective resistance against the bacterial pathogen Pseudomonas syringae. Thus, immune pathways activated by cell-surface and intracellular receptors in plants mutually potentiate to activate strong defences against pathogens. These findings reshape our understanding of plant immunity and have broad implications for crop improvement.


Assuntos
Arabidopsis/imunologia , Proteínas NLR/imunologia , Imunidade Vegetal/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Arabidopsis/citologia , Arabidopsis/microbiologia , Morte Celular , NADPH Oxidases/metabolismo , Células Vegetais/imunologia , Células Vegetais/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Pseudomonas fluorescens/imunologia , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Transdução de Sinais/imunologia
10.
Curr Opin Plant Biol ; 62: 102030, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33684883

RESUMO

Plants resist attacks by pathogens via innate immune responses, which are initiated by cell surface-localized pattern-recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat containing receptors (NLRs) leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. Although the two classes of immune receptors involve different activation mechanisms and appear to require different early signalling components, PTI and ETI eventually converge into many similar downstream responses, albeit with distinct amplitudes and dynamics. Increasing evidence suggests the existence of intricate interactions between PRR-mediated and NLR-mediated signalling cascades as well as common signalling components shared by both. Future investigation of the mechanisms underlying signal collaboration between PRR-initiated and NLR-initiated immunity will enable a more complete understanding of the plant immune system. This review discusses recent advances in our understanding of the relationship between the two layers of plant innate immunity.


Assuntos
Imunidade Vegetal , Receptores de Reconhecimento de Padrão , Doenças das Plantas , Imunidade Vegetal/genética , Plantas , Transdução de Sinais
11.
J Exp Bot ; 71(6): 2186-2197, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32050020

RESUMO

Plant nucleotide-binding domain, leucine-rich repeat receptor (NLR) proteins play important roles in recognition of pathogen-derived effectors. However, the mechanism by which plant NLRs activate immunity is still largely unknown. The paired Arabidopsis NLRs RRS1-R and RPS4, that confer recognition of bacterial effectors AvrRps4 and PopP2, are well studied, but how the RRS1/RPS4 complex activates early immediate downstream responses upon effector detection is still poorly understood. To study RRS1/RPS4 responses without the influence of cell surface receptor immune pathways, we generated an Arabidopsis line with inducible expression of the effector AvrRps4. Induction does not lead to hypersensitive cell death response (HR) but can induce electrolyte leakage, which often correlates with plant cell death. Activation of RRS1 and RPS4 without pathogens cannot activate mitogen-associated protein kinase cascades, but still activates up-regulation of defence genes, and therefore resistance against bacteria.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Estradiol , Proteínas NLR/genética , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas/genética
12.
Plant Biotechnol J ; 18(7): 1610-1619, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31916350

RESUMO

The plant immune system involves detection of pathogens via both cell-surface and intracellular receptors. Both receptor classes can induce transcriptional reprogramming that elevates disease resistance. To assess differential gene expression during plant immunity, we developed and deployed quantitative sequence capture (CAP-I). We designed and synthesized biotinylated single-strand RNA bait libraries targeted to a subset of defense genes, and generated sequence capture data from 99 RNA-seq libraries. We built a data processing pipeline to quantify the RNA-CAP-I-seq data, and visualize differential gene expression. Sequence capture in combination with quantitative RNA-seq enabled cost-effective assessment of the expression profile of a specified subset of genes. Quantitative sequence capture is not limited to RNA-seq or any specific organism and can potentially be incorporated into automated platforms for high-throughput sequencing.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , RNA , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA