Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 105(2): 603-618, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38747400

RESUMO

Fish species of the genus Amphiprion (Perciformes: Pomacentridae) seek protection from predators among the tentacles of sea anemones as their natural habitat, where they live essentially unharmed from stinging by the host's nematocysts. The skin mucus of these anemonefish has been suggested as a protective mechanism that prevents the discharge of the nematocysts upon contact. Whereas some anemonefish species seem to produce their own protective mucous coating, others may acquire mucus (or biomolecules within) from the sea anemone during an acclimation period. In controlled experiments, we show that Amphiprion ocellaris acclimated successfully to their natural host anemone species Stichodactyla gigantea, and also to Stichodactyla haddoni, and in some cases Heteractis crispa, neither of which are natural host species. No symbiosis was observed for three other anemone species tested, Entacmaea quadricolor, Macrodactyla doreensis, and Heteractis malu. We explored the skin mucous protein profile from naive and experienced A. ocellaris during their acclimation to natural and unnatural host anemones. We confidently report the presence of metabolic and structural proteins in the skin mucus of all samples, likely involved in immunological defense, molecular transport, stress response, and signal transduction. For those anemonefish that established symbiosis, there was a clear increase in ribosomal-type proteins. We additionally provide evidence for the presence of anemone proteins only in the skin mucus of individuals that established symbiosis. Our results support previous speculation of the role of skin mucous-associated proteins in anemonefish-anemone symbiosis. Further exploration of these mucosal proteins could reveal the mechanism of anemonefish acclimation to host anemones.


Assuntos
Muco , Perciformes , Anêmonas-do-Mar , Simbiose , Animais , Anêmonas-do-Mar/fisiologia , Perciformes/fisiologia , Muco/química , Muco/fisiologia , Pele/metabolismo , Aclimatação , Proteínas de Peixes/metabolismo
3.
J Fish Biol ; 94(6): 937-947, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30676646

RESUMO

In this study, we investigated the host choice of naïve Amphiprion ocellaris, a specialist, at two different stages of development (newly settling juveniles and post-settlement juveniles). The fish were exposed to their natural and unnatural host species in the laboratory and their fitness was assessed in terms of activity and growth rate. Newly settling juveniles exhibited little host preference, while post-settlement juveniles immediately associated with their most common host in the wild. The analysis of fish activity confirmed that A. ocellaris is diurnal; they are most active in the morning, less at midday and barely move at night. The average travelling distance of juveniles was shorter in the groups living with their natural host, increasing in the groups living with an unnatural host and was highest in groups that did not become associated with any other unnatural host species. Post-settlement juveniles living with the natural host species grew better than those living with unnatural hosts or without anemone contact. These results suggest that the welfare of A. ocellaris in captivity will be optimized by keeping them with their natural anemone host species, although more generalist Amphiprion species may survive in association with other hosts.


Assuntos
Comportamento Animal , Perciformes/fisiologia , Anêmonas-do-Mar/fisiologia , Simbiose , Bem-Estar do Animal , Animais , Comportamento de Escolha , Perciformes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA