Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Lett ; 570: 216327, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37499740

RESUMO

Molecular biomarkers that interact with the vascular and immune compartments play an important role in the progression of solid malignancies. CD105, which is a component of the transforming growth factor beta (TGF ß) signaling cascade, has long been studied for its role in potentiating angiogenesis in numerous cancers. In renal cell carcinoma (RCC), the role of CD105 is more complicated due to its diverse expression profile on the tumor cells, tumor vasculature, and the components of the immune system. Since its discovery, its angiogenic role has overshadowed other potential functions, especially in cancers. In this review, we aim to summarize the recent evidence and findings of the multifunctional roles of CD105 in angiogenesis and immunomodulation in the context of the various subtypes of RCC, with a specific emphasis on the clear cell RCC subtype. Since CD105 is an established biomarker and tumor antigen, we also provide an update on the preclinical and clinical applications of CD105 as a therapeutic platform in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/patologia , Endoglina , Fator de Crescimento Transformador beta , Neoplasias Renais/genética , Neoplasias Renais/terapia , Neoplasias Renais/patologia , Neovascularização Patológica/metabolismo
2.
Cancers (Basel) ; 15(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36831577

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in both men and women in the United States. While immune checkpoint inhibitor (ICI) therapy is demonstrating remarkable clinical responses, the resistance and immune-related toxicities associated with ICIs demonstrate the need to develop additional immunotherapy options for CRC patients. Cancer vaccines represent a safe and promising treatment approach for CRC. As previously developed tumor-associated antigen (TAA)-based cancer vaccines for CRC are not demonstrating promising results, we propose that interferon-stimulated gene 15 (ISG15) is a novel TAA and therapeutic target for CRC. Our work demonstrates the anti-tumor efficacy of a Listeria-based vaccine targeting ISG15, designated Lm-LLO-ISG15, in an immunocompetent CRC murine model. The Lm-LLO-ISG15-mediated anti-tumor response is associated with an increased influx of functional T cells, higher production of multiple intracellular cytokines response, a lower number of regulatory T cells, and a greater ratio of effector to regulatory T cells (Teff/Treg) in the tumor microenvironment.

3.
Cancer Lett ; 556: 216080, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736853

RESUMO

Among the plethora of defense mechanisms which a host elicits after pathogen invasion, type 1 interferons play a central role in regulating the immune system's response. They induce several interferon-stimulated genes (ISGs) which play a diverse role once activated. Over the past few decades, there have been several studies exploring the role of ISGs in cancer and ISG15 is among the most studied for its pro and anti-tumorigenic role. In this review, we aim to provide an update on the recent observations and findings related to ISG15 in cancer. We provide a brief overview about the initial observations and important historical findings which helped scientists understand structure and function of ISG15. We aim to provide an overview of ISG15 in cancer with an emphasis on studies which delve into the molecular mechanism of ISG15 in modulating the tumor microenvironment. Further, the dysregulation of ISG15 in cancer and the molecular mechanisms associated with its pro and anti-tumor roles are discussed in respective cancer types. Finally, we discuss multiple therapeutic applications of ISG15 in current cancer therapy.


Assuntos
Citocinas , Neoplasias , Ubiquitinas , Humanos , Citocinas/genética , Interferon Tipo I/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral , Ubiquitinas/genética
4.
Cancer Immunol Immunother ; 72(6): 1633-1646, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36586013

RESUMO

CD105 (endoglin) is a transmembrane protein that functions as a TGF-beta coreceptor and is highly expressed on endothelial cells. Unsurprisingly, preclinical and clinical evidence strongly suggests that CD105 is an important contributor to tumor angiogenesis and tumor progression. Emerging evidence suggests that CD105 is also expressed by tumor cells themselves in certain cancers such as renal cell carcinoma (RCC). In human RCC tumor cells, CD105 expression is associated with stem cell-like properties and contributes to the malignant phenotype in vitro and in xenograft models. However, as a regulator of TGF-beta signaling, there is a striking lack of evidence for the role of tumor-expressed CD105 in the anti-tumor immune response and the tumor microenvironment. In this study, we report that tumor cell-expressed CD105 potentiates both the in vitro and in vivo tumorigenic potential of RCC in a syngeneic murine RCC tumor model. Importantly, we find that tumor cell-expressed CD105 sculpts the tumor microenvironment by enhancing the recruitment of immunosuppressive cell types and inhibiting the polyfunctionality of tumor-infiltrating CD4+ and CD8+ T cells. Finally, while CD105 expression by endothelial cells is a well-established contributor to tumor angiogenesis, we also find that tumor cell-expressed CD105 significantly contributes to tumor angiogenesis in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Carcinoma de Células Renais/patologia , Células Endoteliais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Endoglina , Neovascularização Patológica/metabolismo , Fator de Crescimento Transformador beta , Neoplasias Renais/patologia , Terapia de Imunossupressão , Microambiente Tumoral
5.
Cancer Immunol Immunother ; 72(9): 2889-2903, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36562824

RESUMO

Renal cell carcinoma (RCC) is the deadliest form of urological cancer and is projected to be the fourth most common neoplasm in the USA in males by 2040. In addition to the current poor prognosis with 5-year survival rates hardly reaching 15%, the prevalence of resistance to currently available systemic therapies has also established an urgent need to develop new treatment regimen(s) for advanced RCC. Interferon-stimulated gene 15 (ISG15) is the first identified ubiquitin-like modifier and has been intensively studied for its central role in innate immunity against intracellular pathogens. However, in this study, we identified ISG15 as a novel tumor-associated antigen and prognostic marker in RCC. Further, we therapeutically targeted elevated ISG15 expression by means of a Listeria monocytogenes (Lm)-based vaccine, designated Lm-LLO-ISG15, in both subcutaneous and orthotopic RCC mouse models. Treatment with Lm-LLO-ISG15 resulted in an influx of tumor-infiltrating effector T cells and significant anti-tumor efficacy in both subcutaneous and orthotopic RCC tumor models. Treatment with Lm-LLO-ISG15 also generated a robust interferon-gamma response and attracted a larger pool of polyfunctional T cells into the tumor microenvironment. Importantly, the therapeutic efficacy of Lm-LLO-ISG15 in RCC is comparable to that of anti-PD-1 and sunitinib, the current frontline therapies for RCC patients. Collectively, our work illustrates that targeting ISG15 in RCC with a CTL-based immunotherapy such as Lm-LLO-ISG15 is a promising and potentially translatable therapeutic strategy to enhance survival in RCC patients.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Carcinoma de Células Renais , Citocinas , Neoplasias Renais , Listeria monocytogenes , Ubiquitinas , Animais , Humanos , Masculino , Camundongos , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/terapia , Linhagem Celular Tumoral , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/imunologia , Neoplasias Renais/terapia , Listeria monocytogenes/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Sunitinibe/uso terapêutico , Linfócitos T/imunologia , Ubiquitinas/antagonistas & inibidores , Ubiquitinas/imunologia , Microambiente Tumoral/imunologia
6.
Breast Cancer ; 30(2): 167-186, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36399321

RESUMO

Heterogeneity of the tumor microenvironment (TME) and the lack of a definite targetable receptor in triple-negative breast cancer (TNBC) has carved a niche for this cancer as a particularly therapeutically challenging form of breast cancer. However, recent advances in high-throughput genomic analysis have provided new insights into the unique microenvironment and defining characteristics of various subsets of TNBC. This improved understanding has contributed to the development of novel therapeutic strategies including targeted therapies such as PARP inhibitors and CDK inhibitors. Moreover, the recent FDA approval of the immune checkpoint inhibitor against programmed cell death protein 1 (PD-1), pembrolizumab and atezolizumab, holds the promise of improving the quality of life and increasing the overall survival of TNBC patients. This recent approval is one of the many therapeutically novel strategies that are currently being exploited in clinical trials toward eventual contribution to the oncologist's toolbox against TNBC. In this review, we comprehensively discuss TNBC's distinct TME and its immunophenotype. Furthermore, we highlight the histological and molecular classification of this cancer. More importantly, we describe how these characteristics and classifications contribute to the current standards of care and how they steer the development of newer and more targeted therapies toward achieving peak therapeutic goals in the treatment of TNBC.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Qualidade de Vida , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
7.
Front Immunol ; 13: 1038807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439126

RESUMO

Targeting tumor-associated angiogenesis is currently at the forefront of renal cell carcinoma (RCC) therapy, with sunitinib and bevacizumab leading to increased survival in patients with metastatic RCC (mRCC). However, resistance often occurs shortly after initiation of therapy, suggesting that targeting the tumor-associated vascular endothelium may not be sufficient to eradicate RCC. This study reports the therapeutic efficacy of a Listeria (Lm)-based vaccine encoding an antigenic fragment of CD105 (Lm-LLO-CD105A) that targets both RCC tumor cells and the tumor-associated vasculature. Lm-LLO-CD105A treatment reduced primary tumor growth in both subcutaneous and orthotopic models of murine RCC. The vaccine conferred anti-tumor immunity and remodeled the tumor microenvironment (TME), resulting in increased infiltration of polyfunctional CD8+ and CD4+ T cells and reduced infiltration of immunosuppressive cell types within the TME. We further provide evidence that the therapeutic efficacy of Lm-LLO-CD105A is mediated by CD8+ T cells and is dependent on the robust antigenic expression of CD105 by RCC tumor cells. The result from this study demonstrates the safety and promising therapeutic efficacy of targeting RCC-associated CD105 expression with Lm-based immunotherapy.


Assuntos
Vacinas Anticâncer , Carcinoma de Células Renais , Neoplasias Renais , Listeria , Humanos , Camundongos , Animais , Carcinoma de Células Renais/tratamento farmacológico , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Imunoterapia/métodos , Neovascularização Patológica/tratamento farmacológico , Neoplasias Renais/patologia , Microambiente Tumoral
8.
Semin Cancer Biol ; 86(Pt 3): 971-980, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34033895

RESUMO

Anti-PD-1 and oncolytic viruses (OVs) have non-overlapping anti-tumor mechanisms, since each agent works at different steps of the cancer-immunity cycle. Evidence suggests that OVs improve therapeutic responses to anti-PD-1 therapy by reversing immunosuppressive factors, increasing the number and diversity of infiltrating lymphocytes, and promoting PD-L1 expression in both injected and non-injected tumors. Many studies in preclinical models suggest that the timing of anti-PD-1 administration influences the therapeutic success of the combination therapy (anti-PD-1 + OV). Therefore, determining the appropriate sequencing of agents is of critical importance to designing a rationale OV-based combinational clinical trial. Currently, the combination of anti-PD-1 and OVs are being delivered using various schedules, and we have classified the timing of administration of anti-PD-1 and OVs into five categories: (i) anti-PD-1 lead-in → OV; (ii) concurrent administration; (iii) OV lead-in → anti-PD-1; (iv) concurrent therapy lead-in → anti-PD-1; and (v) OV lead-in → concurrent therapy. Based on the reported preclinical and clinical literature, the most promising treatment strategy to date is hypothesized to be OV lead-in → concurrent therapy. In the OV lead-in → concurrent therapy approach, initial OV treatment results in T cell priming and infiltration into tumors and an immunologically hot tumor microenvironment (TME), which can be counterbalanced by engagement of PD-L1 to PD-1 receptor on immune cells, leading to T cell exhaustion. Therefore, after initial OV therapy, concurrent use of both OV and anti-PD-1 is critical through which OV maintains T cell priming and an immunologically hot TME, whereas PD-1 blockade helps to overcome PD-L1/PD-1-mediated T cell exhaustion. It is important to note that the hypothetical conclusion drawn in this review is based on thorough literature review on current understanding of OV + anti-PD-1 combination therapies and rhythm of treatment-induced cancer-immunity cycle. A variety of confounding factors such as tumor types, OV types, presence or absence of cytokine transgenes carried by an OV, timing of treatment initiation, varying dosages and treatment frequencies/duration of OV and anti-PD-1, etc. may affect the validity of our conclusion that will need to be further examined by future research (such as side-by-side comparative studies using all five treatment schedules in a given tumor model).


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Terapia Viral Oncolítica/métodos , Antígeno B7-H1/genética , Vírus Oncolíticos/genética , Microambiente Tumoral , Neoplasias/terapia
9.
J Vis Exp ; (171)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-34057449

RESUMO

Oncolytic viruses (OVs), such as the oncolytic herpes simplex virus (oHSV), are a rapidly growing treatment strategy in the field of cancer immunotherapy. OVs, including oHSV, selectively replicate in and kill cancer cells (sparing healthy/normal cells) while inducing anti-tumor immunity. Because of these unique properties, oHSV-based treatment strategies are being increasingly used for the treatment of cancer, preclinically and clinically, including FDA-approved talimogene laherparevec (T-Vec). Growth, purification, and titration are three essential laboratory techniques for any OVs, including oHSVs, before they can be utilized for experimental studies. This paper describes a simple step-by-step method to amplify oHSV in Vero cells. As oHSVs multiply, they produce a cytopathic effect (CPE) in Vero cells. Once 90-100% of the infected cells show a CPE, they are gently harvested, treated with benzonase and magnesium chloride (MgCl2), filtered, and subjected to purification using the sucrose-gradient method. Following purification, the number of infectious oHSV (designated as plaque-forming units or PFUs) is determined by a "plaque assay" in Vero cells. The protocol described herein can be used to prepare high-titer oHSV stock for in vitro studies in cell culture and in vivo animal experiments.


Assuntos
Herpes Simples , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Chlorocebus aethiops , Imunoterapia , Neoplasias/terapia , Células Vero
10.
Cancers (Basel) ; 13(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670551

RESUMO

Glioblastoma (GBM) is the most common form of primary malignant brain tumor with a devastatingly poor prognosis. The disease does not discriminate, affecting adults and children of both sexes, and has an average overall survival of 12-15 months, despite advances in diagnosis and rigorous treatment with chemotherapy, radiation therapy, and surgical resection. In addition, most survivors will eventually experience tumor recurrence that only imparts survival of a few months. GBM is highly heterogenous, invasive, vascularized, and almost always inaccessible for treatment. Based on all these outstanding obstacles, there have been tremendous efforts to develop alternative treatment options that allow for more efficient targeting of the tumor including small molecule drugs and immunotherapies. A number of other strategies in development include therapies based on nanoparticles, light, extracellular vesicles, and micro-RNA, and vessel co-option. Advances in these potential approaches shed a promising outlook on the future of GBM treatment. In this review, we briefly discuss the current understanding of adult GBM's pathogenetic features that promote treatment resistance. We also outline novel and promising targeted agents currently under development for GBM patients during the last few years with their current clinical status.

11.
Oncolytic Virother ; 10: 1-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659221

RESUMO

Glioblastoma (GBM) is a lethal primary malignant brain tumor with no current effective treatments. The recent emergence of immuno-virotherapy and FDA approval of T-VEC have generated a great expectation towards oncolytic herpes simplex viruses (oHSVs) as a promising treatment option for GBM. Since the generation and testing of the first genetically engineered oHSV in glioma in the early 1990s, oHSV-based therapies have shown a long way of great progress in terms of anti-GBM efficacy and safety, both preclinically and clinically. Here, we revisit the literature to understand the recent advancement of oHSV in the treatment of GBM. In addition, we discuss current obstacles to oHSV-based therapies and possible strategies to overcome these pitfalls.

12.
Front Oncol ; 10: 384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266155

RESUMO

Triple-negative breast cancer (TNBC) is a difficult-to-treat disease with high rates of local recurrence, distant metastasis, and poor overall survival with existing therapies. Thus, there is an unmet medical need to develop new treatment regimen(s) for TNBC patients. An oncolytic herpes simplex virus encoding a master anti-tumor cytokine, interleukin 12, (designated G47Δ-mIL12) selectively kills cancer cells while inducing anti-tumor immunity. G47Δ-mIL12 efficiently infected and killed murine (4T1 and EMT6) and human (HCC1806 and MDA-MB-468) mammary tumor cells in vitro. In vivo in the 4T1 syngeneic TNBC model, it significantly reduced primary tumor burden and metastasis, both at early and late stages of tumor development. The virus-induced local and abscopal effects were confirmed by significantly increased infiltration of CD45+ leukocytes and CD8+ T cells, and reduction of granulocytic and monocytic MDSCs in tumors, both treated and untreated contralateral, and in the spleen. Significant trafficking of dendritic cells (DCs) were only observed in spleens of virus-treatment group, indicating that DCs are primed and activated in the tumor-microenvironment following virotherapy, and trafficked to lymphoid organs for activation of immune cells, such as CD8+ T cells. DC priming/activation could be associated with virally enhanced expression of several antigen processing/presentation genes in the tumor microenvironment, as confirmed by NanoString gene expression analysis. Besides DC activation/priming, G47Δ-mIL12 treatment led to up-regulation of CD8+ T cell activation markers in the tumor microenvironment and inhibition of tumor angiogenesis. The anti-tumor effects of G47Δ-mIL12 treatment were CD8-dependent. These studies illustrate the ability of G47Δ-mIL12 to immunotherapeutically treat TNBC.

13.
Cells ; 9(2)2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050597

RESUMO

Oncolytic viruses (OVs) are genetically modified or naturally occurring viruses, which preferentially replicate in and kill cancer cells while sparing healthy cells, and induce anti-tumor immunity. OV-induced tumor immunity can be enhanced through viral expression of anti-tumor cytokines such as interleukin 12 (IL-12). IL-12 is a potent anti-cancer agent that promotes T-helper 1 (Th1) differentiation, facilitates T-cell-mediated killing of cancer cells, and inhibits tumor angiogenesis. Despite success in preclinical models, systemic IL-12 therapy is associated with significant toxicity in humans. Therefore, to utilize the therapeutic potential of IL-12 in OV-based cancer therapy, 25 different IL-12 expressing OVs (OV-IL12s) have been genetically engineered for local IL-12 production and tested preclinically in various cancer models. Among OV-IL12s, oncolytic herpes simplex virus encoding IL-12 (OHSV-IL12) is the furthest along in the clinic. IL-12 expression locally in the tumors avoids systemic toxicity while inducing an efficient anti-tumor immunity and synergizes with anti-angiogenic drugs or immunomodulators without compromising safety. Despite the rapidly rising interest, there are no current reviews on OV-IL12s that exploit their potential efficacy and safety to translate into human subjects. In this article, we will discuss safety, tumor-specificity, and anti-tumor immune/anti-angiogenic effects of OHSV-IL12 as mono- and combination-therapies. In addition to OHSV-IL12 viruses, we will also review other IL-12-expressing OVs and their application in cancer therapy.


Assuntos
Imunoterapia , Mediadores da Inflamação/metabolismo , Interleucina-12/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Vírus Oncolíticos/metabolismo , Engenharia Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA