Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Free Radic Biol Med ; 201: 26-40, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36907254

RESUMO

Cold atmospheric plasma-treated liquids (PTLs) exhibit selective toxicity toward tumor cells and are provoked by a cocktail of reactive oxygen and nitrogen species in such liquids. Compared to the gaseous phase, these reactive species are more persistent in the aqueous phase. This indirect plasma treatment method has gradually gathered interest in the discipline of plasma medicine to treat cancer. PTL's motivated effect on immunosuppressive proteins and immunogenic cell death (ICD) in solid cancer cells is still not explored. In this study, we aimed to induce immunomodulation by plasma-treated Ringer's lactate (PT-RL) and phosphate-buffered saline (PT-PBS) solutions for cancer treatment. PTLs induced minimum cytotoxicity in normal lung cells and inhibited cancer cell growth. ICD is confirmed by the enhanced expression of damage-associated molecular patterns (DAMPs). We evidenced that PTLs induce intracellular nitrogen oxide species accumulation and elevate immunogenicity in cancer cells owing to the production of pro-inflammatory cytokines, DAMPs, and reduced immunosuppressive protein CD47 expression. In addition, PTLs influenced A549 cells to elevate the organelles (mitochondria and lysosomes) in macrophages. Taken together, we have developed a therapeutic approach to potentially facilitate the selection of a suitable candidate for direct clinical applications.


Assuntos
Carcinoma , Neoplasias Pulmonares , Gases em Plasma , Humanos , Argônio/uso terapêutico , Antígeno CD47/uso terapêutico , Morte Celular Imunogênica , Neoplasias Pulmonares/tratamento farmacológico , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Pulmão
2.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768225

RESUMO

Over time, the proportion of resistant bacteria will increase. This is a major concern. Therefore, effective and biocompatible therapeutic strategies against these bacteria are urgently needed. Non-thermal plasma has been exhaustively characterized for its antibacterial activity. This study aims to investigate the inactivation efficiency and mechanisms of plasma-generated nitric oxide water (PG-NOW) on pathogenic water, air, soil, and foodborne Gram-negative and Gram-positive bacteria. Using a colony-forming unit assay, we found that PG-NOW treatment effectively inhibited the growth of bacteria. Moreover, the intracellular nitric oxide (NO) accumulation was evaluated by 4-amino-5-methylamino-2',7'-dichlorofluorescein diacetate (DAF-FM DA) staining. The reduction of viable cells unambiguously indicates the anti-microbial effect of PG-NOW. The soxR and soxS genes are associated with nitrosative stress, and oxyR regulation corresponds to oxidative stress in bacterial cells. To support the nitrosative effect mediated by PG-NOW, we have further assessed the soxRS and oxyR gene expressions after treatment. Accordingly, soxRS expression was enhanced, whereas the oxyR expression was decreased following PG-NOW treatment. The disruption of cell morphology was observed using scanning electron microscopy (SEM) analysis. In conclusion, our findings furnish evidence of an initiation point for the further progress and development of PG-NOW-based antibacterial treatments.


Assuntos
Óxido Nítrico , Estresse Nitrosativo , Óxido Nítrico/metabolismo , Estresse Oxidativo , Bactérias/metabolismo , Antibacterianos/farmacologia
3.
Sci Prog ; 106(1): 368504221148843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650980

RESUMO

Heat shock protein 70 (HSP70) genes play essential roles in guarding plants against abiotic stresses, including heat, drought, and salt. In this study, the SlHSP70 gene family in tomatoes has been characterized using bioinformatic tools. 25 putative SlHSP70 genes in the tomato genome were found and classified into five subfamilies, with multi-subcellular localizations. Twelve pairs of gene duplications were identified, and segmental events were determined as the main factor for the gene family expansion. Based on public RNA-seq data, gene expression analysis identified the majority of genes expressed in the examined organelles. Further RNA-seq analysis and then quantitative RT-PCR validation showed that many SlHSP70 members are responsible for cellular feedback to heat, drought, and salt treatments, in which, at least five genes might be potential key players in the stress response. Our results provided a thorough overview of the SlHSP70 gene family in the tomato, which may be useful for the evolutionary and functional analysis of SlHSP70 under abiotic stress conditions.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Choque Térmico HSP70/genética , Filogenia , Estresse Fisiológico/genética , Perfilação da Expressão Gênica
4.
J Adv Res ; 43: 59-71, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585115

RESUMO

BACKGROUND: Outbreaks of airborne viral infections, such as COVID-19, can cause panic regarding other severe respiratory syndrome diseases that may develop and affect public health. It is therefore necessary to develop control methods that offer protection against such viruses. AIM OF REVIEW: To identify a feasible solution for virus deactivation, we critically reviewed methods of generating reactive oxygen species (ROS), which can attack a wide range of molecular targets to induce antiviral activity, accounting for their flexibility in facilitating host defense mechanisms against a comprehensive range of pathogens. Recently, the role of ROS in microbial decontamination has been critically investigated as a major topic in infectious diseases. ROS can eradicate pathogens directly by inducing oxidative stress or indirectly by promoting pathogen removal through numerous non-oxidative mechanisms, including autophagy, T-cell responses, and pattern recognition receptor signaling. KEY SCIENTIFIC CONCEPTS OF REVIEW: In this article, we reviewed possible methods for the in vitro generation of ROS with antiviral activity. Furthermore, we discuss, in detail, the novel and environmentally friendly cold plasma delivery system in the destruction of viruses. This review highlights the potential of ROS as therapeutic mediators to modernize current techniques and improvement on the efficiency of inactivating SARS-CoV2 and other viruses.


Assuntos
COVID-19 , Gases em Plasma , Vírus , Humanos , Espécies Reativas de Oxigênio , Gases em Plasma/farmacologia , RNA Viral , SARS-CoV-2 , Antivirais
5.
Bioact Mater ; 19: 569-580, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35574062

RESUMO

The ongoing pandemic caused by the novel coronavirus, SARS-CoV-2, is influencing global health. Moreover, there is a major threat of future coronaviruses affecting the entire world in a similar, or even more dreadful, manner. Therefore, effective and biocompatible therapeutic options against coronaviruses are urgently needed. To address this challenge, medical specialists require a well-informed and safe approach to treating human coronaviruses (HCoVs). Herein, an environmental friendly approach for viral inactivation, based on plasma technology, was considered. A microwave plasma system was employed for the generation of the high amount of gaseous nitric oxide to prepare nitric oxide enriched plasma-activated water (NO-PAW), the effects of which on coronaviruses, have not been reported to date. To determine these effects, alpha-HCoV-229E was used in an experimental model. We found that NO-PAW treatment effectively inhibited coronavirus infection in host lung cells, visualized by evaluating the cytopathic effect and expression level of spike proteins. Interestingly, NO-PAW showed minimal toxicity towards lung host cells, suggesting its potential for therapeutic application. Moreover, this new approach resulted in viral inactivation and greatly improved the gene levels involved in host antiviral responses. Together, our findings provide evidence of an initiation point for further progress toward the clinical development of antiviral treatments, including such coronaviruses.

6.
J Funct Biomater ; 13(4)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36547543

RESUMO

Beneficial natural products utilized in cosmetics formulation and pharmaceutical applications are of enormous interest. Lily (Lilium) serves as an essential edible and medicinal plant species with wide classification. Here, we have performed the screening of various extracts that were prepared from flower petals grown from the bulbs of eight Lilium varieties, with a viewpoint to their applicability as a viable source of natural anti-inflammatory and antioxidants agent. Interestingly, our findings indicated that all ethanol and water extracts exhibited a substantially differential spectrum of antioxidant as well as anti-inflammatory properties. Specifically, Serrano showed a close similarity among ethanol and water extracts among all tested lily petal extracts. Therefore, to obtain a detailed analysis of chemical compounds, liquid chromatography-mass spectroscopy was performed in ethanolic and water extracts of Serrano petals. Together, our preliminary results indicated that lily petals extracts used in this study could serve as a basis to develop a potential new whitening agent with powerful antioxidant and anti-inflammatory properties for medicinal, functional food, and cosmetic applications.

7.
Front Plant Sci ; 13: 814178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909770

RESUMO

The global market of the medicinal plant ginseng is worth billions of dollars. Many ginseng species are threatened in the wild and effective sustainable development initiatives are necessary to preserve biodiversity at species and genetic level whilst meeting the demand for medicinal produce. This is also the case of Panax vietnamensis Ha & Grushv., an endemic and threatened ginseng species in Vietnam that is locally cultivated at different scales and has been the object of national breeding programs. To investigate the genetic diversity within cultivated and wild populations of P. vietnamensis we captured 353 nuclear markers using the Angiosperm-353 probe set. Genetic diversity and population structure were evaluated for 319 individuals of Vietnamese ginseng across its area of distribution and from wild and a varying range of cultivated areas. In total, 319 individuals were sampled. After filtering, 1,181 SNPs were recovered. From the population statistics, we observe high genetic diversity and high genetic flow between populations. This is also supported by the STRUCTURE analysis. The intense gene flow between populations and very low genetic differentiation is observed regardless of the populations' wild or cultivated status. High levels of admixture from two ancestral populations exist in both wild and cultivated samples. The high gene flow between populations can be attributed to ancient and on-going practices of cultivation, which exist in a continuum from understorey, untended breeding to irrigated farm cultivation and to trade and exchange activities. These results highlight the importance of partnering with indigenous peoples and local communities and taking their knowledge into account for biodiversity conservation and sustainable development of plants of high cultural value.

8.
Toxicol In Vitro ; 85: 105460, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35998759

RESUMO

Nano-based products have become an apparent and effective option to treat liver cancer, which is a deadly disease, and minimize or eradicate these problems. The Core-shell ZnO microspheres composed of nanoclusters (ZnOMS-NCs) have shown that it is very worthwhile to administer the proliferation rate in HepG2 and MCF-7 cancer cells even at a very low concentration (5 µg/mL). ZnOMS-NCs were prepared through hydrothermal solution process and well characterized. The MTT assay revealed that the cytotoxic effects were dose-dependent (2.5 µg/mL-100 µg/mL) on ZnOMS-NCs. The diminished activity in cell viability induces the cytotoxicity response to the ZnOMS-NCs treatment of human cultured cells. The qPCR data showed that the cells (HepG2 and MCF-7) were exposed to ZnOMS-NCs and exhibited up-and downregulated mRNA expression of apoptotic and anti-apoptotic genes, respectively. In conclusion, flow cytometric data exhibited significant apoptosis induction in both cancer cell lines at low concentrations. The possible mechanism also describes the role of ZnOMS-NCs against cancer cells and their responses.


Assuntos
Neoplasias da Mama , Óxido de Zinco , Humanos , Feminino , Óxido de Zinco/toxicidade , Cisteína , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Fígado/metabolismo , RNA Mensageiro/metabolismo , Apoptose , Proliferação de Células
10.
Front Bioeng Biotechnol ; 9: 779393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957073

RESUMO

Carcinogenesis is a major concern that severely affects the human population. Owing to persistent demand for novel therapies to treat and prohibit this lethal disease, research interest among scientists is drawing its huge focus toward natural products, as they have minimum toxicity comparable with existing treatment methods. The plants produce secondary metabolites, which are known to have the anticancer potential for clinical drug development. Furthermore, the use of nanocarriers could boost the solubility and stability of phytocompounds to obtain site-targeting delivery. The identification of potential phytochemicals in natural compounds would be beneficial for the synthesis of biocompatible nanoemulsions. The present study aimed to investigate the potential cytotoxicity of ethanol extracts of Hibiscus syriacus and Cinnamomum loureirii Nees plant parts on human skin melanoma (G361) and lung adenocarcinoma (A549) cells. Importantly, biochemical analysis results showed the presence of high phenol (50-55 µgGAE/mg) and flavonoids [42-45 µg quercetin equivalents (QE)/mg] contents with good antioxidant activity (40-58%) in C. loureirii Nees plants extracts. This plant possesses potent antiproliferative activity (60-90%) on the malignant G361 and A549 and cell lines correlated with the production of nitric oxide. Especially, C. loureirii plant extracts have major metabolites that exhibit cancer cell death associated with cell cycle arrest. These findings support the potential application of Cinnamomum for the development of therapeutic nanoemulsion in future cancer therapy.

11.
Nanotechnology ; 33(10)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34814120

RESUMO

Recently, cold atmospheric-pressure plasma has been studied extensively as an efficient and green method to synthesize gold nanoparticles (AuNPs). Although the characteristics of the AuNPs, especially their homogeneousness, depend very much on the plasma synthesis parameters, there is a lack of a study involving these parameters systematically. Moreover, most of AuNPs-cold-plasma synthesis reports so far either required organic capping agents or resulted in highly non-uniform AuNPs. In this work, we systematically study the effect of most important synthesis parameters- including distance from the plasma jet to the solution, gas flow rate, plasma frequency, volume and concentration of the precursor, plasma interaction time as well as the effect of the synthesis environment (humidity and temperature)-on the uniformity of the AuNPs. Through various characterization measurements, we show that homogeneous and highly stable intrinsic AuNPs with an average size of 45 nm can be obtained with optimized synthesis parameters and in the absence of a stabilizer. The synthesized AuNPs yield advanced optical sensing properties in comparison with commercial AuNPs and can be further applied in developing versatile and high-sensitivity biosensors.

12.
Nanomaterials (Basel) ; 11(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202388

RESUMO

Polyethylene glycol-functionalized gold nanoparticles (Au@PEG NPs) were prepared by a simple plasma-assisted method without additional reducing chemicals. After irradiating tetrachloroauric acid (HAuCl4) and polyethylene glycol (PEG) in aqueous medium with an argon plasma jet, the gold precursor transformed into an Au@PEG NP colloid that exhibited surface plasma resonance at 530 nm. When the plasma jet entered the water, additional reactive species were induced through interactions between plasma-generated reactive species and aqueous media. Interaction of the gold precursor with the plasma-activated medium allowed the synthesis of gold nanoparticles (AuNPs) without reductants. The plasma-synthesized Au@PEG NPs had a quasi-spherical shape with an average particle diameter of 32.5 nm. The addition of PEG not only helped to stabilize the AuNPs but also increased the number of AuNPs. Au@PEG NP-loaded paper (AuNP-paper) was able to detect the degradation of rhodamine B, therefore, indicating that AuNP-paper can act as a surface-enhanced Raman scattering platform. Dye degradation by plasma treatment was investigated by optical absorption and Raman spectroscopy. The method proposed for the fabrication of Au@PEG NPs is rapid, low-cost, and environment-friendly and will facilitate the application of plasma-synthesized nanomaterials in sensors.

13.
Sci Rep ; 11(1): 8475, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875781

RESUMO

Microwave (MW) radiation is increasingly being used for several biological applications. Many investigations have focused on understanding the potential influences of pulsed MW irradiation on biological solutions. The current study aimed to investigate the effects of 3.5 GHz pulsed MW radiation-irradiated liquid solutions on the survival of human cancer and normal cells. Different physiological solutions such as phosphate buffer saline, deionized water, and Dulbecco's modified Eagle medium (DMEM) for cell culture growth were irradiated with pulsed MW radiation (45 shots with the energy of 1 mJ/shot). We then evaluated physiological effects such as cell viability, metabolic activity, mitochondrial membrane potential, cell cycle, and cell death in cells treated with MW-irradiated biological solutions. As MW irradiation with power density ~ 12 kW/cm2 mainly induces reactive nitrogen oxygen species in deionized water, it altered the cell cycle, membrane potential, and cell death rates in U373MG cells due to its high electric field ~ 11 kV/cm in water. Interestingly, MW-irradiated cell culture medium and phosphate-buffered saline did not alter the cellular viability and metabolic energy of cancer and normal cells without affecting the expression of genes responsible for cell death. Taken together, MW-irradiated water can alter cellular physiology noticeably, whereas irradiated media and buffered saline solutions induce negligible or irrelevant changes that do not affect cellular health.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Micro-Ondas/uso terapêutico , Óxido Nítrico/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Ciclo Celular , Proliferação de Células , Glioma , Humanos , Células Tumorais Cultivadas
14.
Cancers (Basel) ; 11(7)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336648

RESUMO

For the last few decades, while significant improvements have been achieved in cancer therapy, this family of diseases is still considered one of the deadliest threats to human health. Thus, there is an urgent need to find novel strategies in order to tackle this vital medical issue. One of the most pivotal causes of cancer initiation is the presence of reactive oxygen species (ROS) inside the body. Interestingly, on the other hand, high doses of ROS possess the capability to damage malignant cells. Moreover, several important intracellular mechanisms occur during the production of ROS. For these reasons, inducing ROS inside the biological system by utilizing external physical or chemical methods is a promising approach to inhibit the growth of cancer cells. Beside conventional technologies, cold atmospheric plasmas are now receiving much attention as an emerging therapeutic tool for cancer treatment due to their unique biophysical behavior, including the ability to generate considerable amounts of ROS. This review summarizes the important mechanisms of ROS generated by chemical, physical, and plasma approaches. We also emphasize the biological effects and cancer inhibition capabilities of ROS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA