Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-8, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824679

RESUMO

This study attempts to reveal antioxidants in the plant parts of Myxopyrum smilacifolium (Wall.) Blume using antioxidant assays and LC-MS/MS analysis. Methanol is the most effective solvent for collecting antioxidants. The roots-derived methanol extract demonstrates the greatest antioxidant activity, corresponding to the extremely low IC50 values of 16.39 µg/mL and 19.80 µg/mL for DPPH and ABTS radicals, respectively. The high phenolic and flavonoid contents are the primary reason for outstanding total antioxidant capacity (TAC; i.e. 247.73 ± 1.62 mg GA/g or 163.93 ± 0.83 mg AS/g) of the root extract. LC-MS/MS quantification of five phenolic compounds reveals exceptionally high amounts of quercetin and luteolin in the root extract, ranging from 238.86 ± 5.74 to 310.99 ± 1.44 µg/g and from 201.49 ± 7.84 to 234.10 ± 2.54 µg/g, respectively, in the root-derived methanol extract. The achievement highlights M. smilacifolium as a promising source of natural antioxidants for large-scale medical applications.

2.
ACS Omega ; 7(51): 47923-47932, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591194

RESUMO

The presented study attempts to unveil and evaluate the antioxidant activity of a novel heteropolysaccharide separated from the roots of Myxopyrum smilacifolium (denoted as PS-MSR). The molecular weight of PS-MSR is found to be 1.88 × 104 Da and contains two principal sugars, which are d-glucose and d-fructose, in the backbone. Decoding the structure of the obtained PS-MSR sample has disclosed a novel polysaccharide for the first time. Indeed, the PS-MSR is composed of (1 → 3)-linked glucosyl units and (2 → 3)-linked fructosyl units. In addition, the 1D and 2D NMR spectra of the PS-MSR sample display the repeating unit of the isolated polysaccharide, [→3)-α-d-Glcp-(1 → 3)-ß-d-Frucf-(2 → 3)-ß-d-Frucf-2 → 3)-)-ß-d-Frucf-ß-(2→] n . Interestingly, the PS-MSR sample exhibits outstanding antioxidant activity, signifying the potential utilization of the explored polysaccharide for antioxidant-based material.

3.
PeerJ ; 5: e3686, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828276

RESUMO

Biological invasion is regarded as one of the greatest environmental problems facilitated by globalization. Some hypotheses about the invasive mechanisms of alien invasive plants consider the plant-herbivore interaction and the role of plant defense in this interaction. For example, the "Shift Defense Hypothesis" (SDH) argues that introduced plants evolve higher levels of qualitative defense chemicals and decreased levels of quantitative defense, as they are released of the selective pressures from specialist herbivores but still face attack from generalists. Common groundsel (Senecio vulgaris), originating from Europe, is a cosmopolitan invasive plant in temperate regions. As in other Senecio species, S. vulgaris contains pyrrolizidine alkaloids (PAs) as characteristic qualitative defense compounds. In this study, S. vulgaris plants originating from native and invasive ranges (Europe and China, respectively) were grown under identical conditions and harvested upon flowering. PA composition and concentration in shoot and root samples were determined using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). We investigated the differences between native and invasive S. vulgaris populations with regard to quantitative and qualitative variation of PAs. We identified 20 PAs, among which senecionine, senecionine N-oxide, integerrimine N-oxide and seneciphylline N-oxide were dominant in the roots. In the shoots, in addition to the 4 PAs dominant in roots, retrorsine N-oxide, spartioidine N-oxide and 2 non-identified PAs were also prevalent. The roots possessed a lower PA diversity but a higher total PA concentration than the shoots. Most individual PAs as well as the total PA concentration were strongly positively correlated between the roots and shoots. Both native and invasive S. vulgaris populations shared the pattern described above. However, there was a slight trend indicating lower PA diversity and lower total PA concentration in invasive S. vulgaris populations than native populations, which is not consistent with the prediction of SDH.

4.
PeerJ ; 4: e2346, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602303

RESUMO

Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae), a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north-eastern and south-western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C), seeds from the majority of the populations showed >90% germination percentage (GP) and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT) was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C) and seasons (in summer or autumn) were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6%) was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C), and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA