Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 954: 176586, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39349191

RESUMO

Soil bacteria are vital to regulate biogeochemical processes in wetlands, however, little is known about the patterns and mechanisms of soil bacterial re-organization during wetland restoration. Here, we used a space-for-time substitution approach and examined the ecological processes that drive soil bacterial assembly from cultivated to restored to natural wetlands. Results showed a decrease of soil bacterial α diversity and increase of bacterial community similarity and bacterial interaction (cooperation vs. competition) with years of restoration, which was dominantly influenced by deterministic processes. Identified bacterial keystone taxa (e.g. Variibacter, Acidibacter) with nutrient metabolism capacity exerted strong positive effect on bacterial interaction. Furthermore, changes of soil water condition and nutrient status showed dominantly direct positive effects on soil bacterial reassembly, while falling soil pH significantly promoted bacterial reassembly by increasing keystone taxa and bacterial interaction during wetland restoration. Overall, findings highlighted the crucial role of environmental filtering and its pathway in influencing keystone bacterial taxa that promotes the reassembly of bacterial community during wetland restoration. Our work thus provides a new crucial and timely insight for improving the management of soil bacterial community assembly within the plethora of current and future wetland restoration projects.

2.
Front Microbiol ; 14: 1327265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260908

RESUMO

Iron (Fe) oxides can stabilize organic carbon (OC) through adsorption and co-precipitation, while microbial Fe reduction can disrupt Fe-bound OC (Fe-OC) and further increase OC mineralization. The net effects of OC preservation and mineralization mediated by Fe oxides are still unclear, especially for old carbon (formed from plant litters over millions of years) and crystalline Fe oxides. Accelerating the recovery of wetland carbon sinks is critical for mitigating climate change and achieving carbon neutrality. Quantifying the net effect of Fe-mediated OC mineralization and preservation is vital for understanding the role of crystalline Fe oxides in carbon cycling and promoting the recovery of soil carbon sinks. Here, we explored the OC balances mediated by hematite (Hem) and lignite addition (Lig) to freshwater wetland (FW, rich in C and Fe) and saline-alkaline wetland (SW, poor in C and Fe) soil slurries, incubated under anaerobic conditions. Results showed that Lig caused net OC accumulation (FW: 5.9 ± 3.6 mg g-1; SW: 8.3 ± 3.2 mg g-1), while Hem caused dramatic OC loss, particularly in the FW soils. Hem inhibited microbial Fe(III) reduction by decreasing the relative abundance of Fe respiration reducers, while substantially enhancing OC mineralization through the shift in the microbial community structure of FW soils. Lig resulted in carbon emission, but its contribution to preservation by the formation of Fe-OC was far higher than that which caused OC loss. We concluded that crystalline Fe oxide addition solely favored the increase of OC mineralization by adjusting the microbial community structure, while old carbon enriched with an aromatic and alkyl promoted Fe-OC formation and further increased OC persistence. Our findings could be employed for wetland restoration, particularly for the recovery of soil carbon sinks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA