Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 876357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693175

RESUMO

Peach diseases seriously affect peach yield and people's health. The precise identification of peach diseases and the segmentation of the diseased areas can provide the basis for disease control and treatment. However, the complex background and imbalanced samples bring certain challenges to the segmentation and recognition of lesion area, and the hard samples and imbalance samples can lead to a decline in classification of foreground class and background class. In this paper we applied deep network models (Mask R-CNN and Mask Scoring R-CNN) for segmentation and recognition of peach diseases. Mask R-CNN and Mask Scoring R-CNN are classic instance segmentation models. Using instance segmentation model can obtain the disease names, disease location and disease segmentation, and the foreground area is the basic feature for next segmentation. Focal Loss can solve the problems caused by difficult samples and imbalance samples, and was used for this dataset to improve segmentation accuracy. Experimental results show that Mask Scoring R-CNN with Focal Loss function can improve recognition rate and segmentation accuracy comparing to Mask Scoring R-CNN with CE loss or comparing to Mask R-CNN. When ResNet50 is used as the backbone network based on Mask R-CNN, the segmentation accuracy of segm_mAP_50 increased from 0.236 to 0.254. When ResNetx101 is used as the backbone network, the segmentation accuracy of segm_mAP_50 increased from 0.452 to 0.463. In summary, this paper used Focal Loss on Mask R-CNN and Mask Scoring R-CNN to generate better mAP of segmentation and output more detailed information about peach diseases.

2.
Plant Methods ; 17(1): 36, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794942

RESUMO

BACKGROUND: Peach diseases can cause severe yield reduction and decreased quality for peach production. Rapid and accurate detection and identification of peach diseases is of great importance. Deep learning has been applied to detect peach diseases using imaging data. However, peach disease image data is difficult to collect and samples are imbalance. The popular deep networks perform poor for this issue. RESULTS: This paper proposed an improved Xception network named as L2MXception which ensembles regularization term of L2-norm and mean. With the peach disease image dataset collected, results on seven mainstream deep learning models were compared in details and an improved loss function was integrated with regularization term L2-norm and mean (L2M Loss). Experiments showed that the Xception model with L2M Loss outperformed the current best method for peach disease prediction. Compared to the original Xception model, the validation accuracy of L2MXception was up to 93.85%, increased by 28.48%. CONCLUSIONS: The proposed L2MXception network may have great potential in early identification of peach diseases.

3.
Sustain Prod Consum ; 26: 228-238, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33072834

RESUMO

This study investigates how, in the process of industrialization, Taiwan successfully developed its plastic waste industry into an industrial-level circular economy by leveraging a network-based collective bricolage in conjunction with a framework of adaptive institutional governance. Three conclusions are made: industrialized manufacturing sectors are foundations upon which developing nations can accumulate endogenous social capabilities and can enable the emergence of network-based collective bricolages; for developing nations that are attempting to establish circular economies based on their endogenous small-to-medium enterprises, developing network-based collective bricolages in conjunction with adaptive institutional governance is an essential and effective strategy; and transitioning into green-related sectors can further drive economic development and lead to the creation of new ventures, businesses, and job opportunities while supporting the formation of a circular economy. The approach is especially relevant for developing countries starting their industrialization process and waste management initiatives with few resources.

4.
Neural Netw ; 133: 220-228, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33232858

RESUMO

Attribution editing has achieved remarkable progress in recent years owing to the encoder-decoder structure and generative adversarial network (GAN). However, it remains challenging to generate high-quality images with accurate attribute transformation. Attacking these problems, the work proposes a novel selective attribute editing model based on classification adversarial network (referred to as ClsGAN) that shows good balance between attribute transfer accuracy and photo-realistic images. Considering that the editing images are prone to be affected by original attribute due to skip-connection in encoder-decoder structure, an upper convolution residual network (referred to as Tr-resnet) is presented to selectively extract information from the source image and target label. In addition, to further improve the transfer accuracy of generated images, an attribute adversarial classifier (referred to as Atta-cls) is introduced to guide the generator from the perspective of attribute through learning the defects of attribute transfer images. Experimental results on CelebA demonstrate that our ClsGAN performs favorably against state-of-the-art approaches in image quality and transfer accuracy. Moreover, ablation studies are also designed to verify the great performance of Tr-resnet and Atta-cls.


Assuntos
Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/classificação , Humanos , Reconhecimento Automatizado de Padrão/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-32373595

RESUMO

Identifying drug-disease associations is integral to drug development. Computationally prioritizing candidate drug-disease associations has attracted growing attention due to its contribution to reducing the cost of laboratory screening. Drug-disease associations involve different association types, such as drug indications and drug side effects. However, the existing models for predicting drug-disease associations merely concentrate on independent tasks: recommending novel indications to benefit drug repositioning, predicting potential side effects to prevent drug-induced risk, or only determining the existence of drug-disease association. They ignore crucial prior knowledge of the correlations between different association types. Since the Comparative Toxicogenomics Database (CTD) annotates the drug-disease associations as therapeutic or marker/mechanism, we consider predicting the two types of association. To this end, we propose a collective matrix factorization-based multi-task learning method (CMFMTL) in this paper. CMFMTL handles the problem as multi-task learning where each task is to predict one type of association, and two tasks complement and improve each other by capturing the relatedness between them. First, drug-disease associations are represented as a bipartite network with two types of links representing therapeutic effects and non-therapeutic effects. Then, CMFMTL, respectively, approximates the association matrix regarding each link type by matrix tri-factorization, and shares the low-dimensional latent representations for drugs and diseases in the two related tasks for the goal of collective learning. Finally, CMFMTL puts the two tasks into a unified framework and an efficient algorithm is developed to solve our proposed optimization problem. In the computational experiments, CMFMTL outperforms several state-of-the-art methods both in the two tasks. Moreover, case studies show that CMFMTL helps to find out novel drug-disease associations that are not included in CTD, and simultaneously predicts their association types.

6.
Biomed Res Int ; 2018: 5670210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30151386

RESUMO

Biological pathways play important roles in the development of complex diseases, such as cancers, which are multifactorial complex diseases that are usually caused by multiple disorders gene mutations or pathway. It has become one of the most important issues to analyze pathways combining multiple types of high-throughput data, such as genomics and proteomics, to understand the mechanisms of complex diseases. In this paper, we propose a method for constructing the pathway network of gene phenotype and find out disease pathogenesis pathways through the analysis of the constructed network. The specific process of constructing the network includes, firstly, similarity calculation between genes expressing data combined with phenotypic mutual information and GO ontology information, secondly, calculating the correlation between pathways based on the similarity between differential genes and constructing the pathway network, and, finally, mining critical pathways to identify diseases. Experimental results on Breast Cancer Dataset using this method show that our method is better. In addition, testing on an alternative dataset proved that the key pathways we found were more accurate and reliable as biological markers of disease. These results show that our proposed method is effective.


Assuntos
Doença , Redes Reguladoras de Genes , Genômica , Fenótipo , Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Biologia Computacional , Feminino , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA