Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1284927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033812

RESUMO

Long-time and high-quality signal acquisition performance from implantable electrodes is the key to establish stable and efficient brain-computer interface (BCI) connections. The chronic performance of implantable electrodes is hindered by the inflammatory response of brain tissue. In order to solve the material limitation of biological interface electrodes, we designed sulfonated silica nanoparticles (SNPs) as the dopant of Poly (3,4-ethylenedioxythiophene) (PEDOT) to modify the implantable electrodes. In this work, melatonin (MT) loaded SNPs were incorporated in PEDOT via electrochemical deposition on nickel-chromium (Ni-Cr) alloy electrode and carbon nanotube (CNT) fiber electrodes, without affecting the acute neural signal recording capacity. After coating with PEDOT/SNP-MT, the charge storage capacity of both electrodes was significantly increased, and the electrochemical impedance at 1 kHz of the Ni-Cr alloy electrodes was significantly reduced, while that of the CNT electrodes was significantly increased. In addition, this study inspected the effect of electrically triggered MT release every other day on the quality and longevity of neural recording from implanted neural electrodes in rat hippocampus for 1 month. Both MT modified Ni-Cr alloy electrodes and CNT electrodes showed significantly higher spike amplitude after 26-day recording. Significantly, the histological studies showed that the number of astrocytes around the implanted Ni-Cr alloy electrodes was significantly reduced after MT release. These results demonstrate the potent outcome of PEDOT/SNP-MT treatment in improving the chronic neural recording quality possibly through its anti-inflammatory property.

2.
Sci Bull (Beijing) ; 67(12): 1284-1294, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546158

RESUMO

Atrial fibrillation is an "invisible killer" of human health. It often induces high-risk diseases, such as myocardial infarction, stroke, and heart failure. Fortunately, atrial fibrillation can be diagnosed and treated early. Low-level vagus nerve stimulation (LL-VNS) is a promising therapeutic method for atrial fibrillation. However, some fundamental challenges still need to be overcome in terms of flexibility, miniaturization, and long-term service of bioelectric stimulation devices. Here, we designed a closed-loop self-powered LL-VNS system that can monitor the patient's pulse wave status in real time and conduct stimulation impulses automatically during the development of atrial fibrillation. The implant is a hybrid nanogenerator (H-NG), which is flexible, light weight, and simple, even without electronic circuits, components, and batteries. The maximum output of the H-NG was 14.8 V and 17.8 µA (peak to peak). In the in vivo effect verification study, the atrial fibrillation duration significantly decreased by 90% after LL-VNS therapy, and myocardial fibrosis and atrial connexin levels were effectively improved. Notably, the anti-inflammatory effect triggered by mediating the NF-κB and AP-1 pathways in our therapeutic system is observed. Overall, this implantable bioelectronic device is expected to be used for self-powerability, intelligentization, portability for management, and therapy of chronic diseases.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Estimulação do Nervo Vago , Humanos , Fibrilação Atrial/terapia , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Átrios do Coração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA