Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Struct Mol Biol ; 28(3): 290-299, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33633399

RESUMO

The striatin-interacting phosphatase and kinase (STRIPAK) complex is a large, multisubunit protein phosphatase 2A (PP2A) assembly that integrates diverse cellular signals in the Hippo pathway to regulate cell proliferation and survival. The architecture and assembly mechanism of this critical complex are poorly understood. Using cryo-EM, we determine the structure of the human STRIPAK core comprising PP2AA, PP2AC, STRN3, STRIP1, and MOB4 at 3.2-Å resolution. Unlike the canonical trimeric PP2A holoenzyme, STRIPAK contains four copies of STRN3 and one copy of each the PP2AA-C heterodimer, STRIP1, and MOB4. The STRN3 coiled-coil domains form an elongated homotetrameric scaffold that links the complex together. An inositol hexakisphosphate (IP6) is identified as a structural cofactor of STRIP1. Mutations of key residues at subunit interfaces disrupt the integrity of STRIPAK, causing aberrant Hippo pathway activation. Thus, STRIPAK is established as a noncanonical PP2A complex with four copies of regulatory STRN3 for enhanced signal integration.


Assuntos
Microscopia Crioeletrônica , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoantígenos/química , Autoantígenos/genética , Autoantígenos/metabolismo , Autoantígenos/ultraestrutura , Proteínas de Ligação a Calmodulina/química , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/ultraestrutura , Via de Sinalização Hippo , Humanos , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutação , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/ultraestrutura , Ácido Fítico/metabolismo , Proteína Fosfatase 2/química , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/ultraestrutura , Proteínas Serina-Treonina Quinases/química , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transdução de Sinais
2.
Elife ; 92020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32292165

RESUMO

The MST-LATS kinase cascade is central to the Hippo pathway that controls tissue homeostasis, development, and organ size. The PP2A complex STRIPAKSLMAP blocks MST1/2 activation. The GCKIII family kinases associate with STRIPAK, but the functions of these phosphatase-associated kinases remain elusive. We previously showed that the scaffolding protein SAV1 promotes Hippo signaling by counteracting STRIPAK (Bae et al., 2017). Here, we show that the GCKIII kinase STK25 promotes STRIPAK-mediated inhibition of MST2 in human cells. Depletion of STK25 enhances MST2 activation without affecting the integrity of STRIPAKSLMAP. STK25 directly phosphorylates SAV1 and diminishes the ability of SAV1 to inhibit STRIPAK. Thus, STK25 as the kinase component of STRIPAK can inhibit the function of the STRIPAK inhibitor SAV1. This mutual antagonism between STRIPAK and SAV1 controls the initiation of Hippo signaling.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Células Cultivadas , Via de Sinalização Hippo , Humanos , Proteínas de Membrana/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Serina-Treonina Quinase 3 , Transdução de Sinais/fisiologia
3.
Methods Mol Biol ; 1893: 239-256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30565138

RESUMO

The Hippo pathway controls organ size and maintains tissue homeostasis through a central MST-LATS kinase cascade. When Hippo signaling is on, activated MST1/2 partner with SAV1 to phosphorylate and activate the LATS1/2-MOB1 complexes, which in turn phosphorylate and inactivate YAP/TAZ transcription co-activators. This process halts the expression of Hippo-responsive genes, thereby inhibiting cell proliferation and promoting apoptosis. Our studies have shown that two core adaptor proteins MOB1 and SAV1 use distinctive mechanisms to enhance Hippo signaling. MOB1 promotes MST-dependent LATS activation through dynamic scaffolding and allosteric regulation. SAV1 promotes MST activation by antagonizing the PP2A phosphatase activity. Here we describe the detailed methods for the purification and crystallization of the MST2-SAV1 and pMOB1-LATS1 complexes, for assaying the SAV1-dependent inhibition of PP2A, and for analyzing LATS1 kinase activation using in vitro reconstitution.


Assuntos
Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Ativação Enzimática , Via de Sinalização Hippo , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Redobramento de Proteína , Serina-Treonina Quinase 3 , Relação Estrutura-Atividade
4.
Elife ; 62017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29063833

RESUMO

The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRIPAK and promotes PP2A-mediated dephosphorylation of MST2 at the activation loop. Our structural and biochemical studies reveal that SAV1 and MST2 heterodimerize through their SARAH domains. Two SAV1-MST2 heterodimers further dimerize through SAV1 WW domains to form a heterotetramer, in which MST2 undergoes trans-autophosphorylation. SAV1 directly binds to STRIPAK and inhibits its phosphatase activity, protecting MST2 activation-loop phosphorylation. Genetic ablation of SLMAP in human cells leads to spontaneous activation of the Hippo pathway and alleviates the need for SAV1 in Hippo signaling. Thus, SAV1 promotes Hippo activation through counteracting the STRIPAKSLMAP PP2A phosphatase complex.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas de Ciclo Celular/química , Cristalografia por Raios X , Via de Sinalização Hippo , Humanos , Proteínas de Membrana/química , Conformação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/síntese química , Serina-Treonina Quinase 3
5.
Genes Dev ; 29(13): 1416-31, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26108669

RESUMO

The Mst-Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1 promotes Lats activation by Mst, but the mechanism remains unknown. Here, we show that human Mob1 binds to autophosphorylated docking motifs in active Mst2. This binding enables Mob1 phosphorylation by Mst2. Phosphorylated Mob1 undergoes conformational activation and binds to Lats1. We determine the crystal structures of phospho-Mst2-Mob1 and phospho-Mob1-Lats1 complexes, revealing the structural basis of both phosphorylation-dependent binding events. Further biochemical and functional analyses demonstrate that Mob1 mediates Lats1 activation through dynamic scaffolding and allosteric mechanisms. Thus, Mob1 acts as a phosphorylation-regulated coupler of kinase activation by virtue of its ability to engage multiple ligands. We propose that stepwise, phosphorylation-triggered docking interactions of nonkinase elements enhance the specificity and robustness of kinase signaling cascades.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Modelos Moleculares , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Cristalização , Drosophila melanogaster , Via de Sinalização Hippo , Humanos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Serina-Treonina Quinase 3
6.
Structure ; 21(10): 1757-68, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23972470

RESUMO

The tumor-suppressive Hippo pathway controls tissue homeostasis through balancing cell proliferation and apoptosis. Activation of the kinases Mst1 and Mst2 (Mst1/2) is a key upstream event in this pathway and remains poorly understood. Mst1/2 and their critical regulators RASSFs contain Salvador/RASSF1A/Hippo (SARAH) domains that can homo- and heterodimerize. Here, we report the crystal structures of human Mst2 alone and bound to RASSF5. Mst2 undergoes activation through transautophosphorylation at its activation loop, which requires SARAH-mediated homodimerization. RASSF5 disrupts Mst2 homodimer and blocks Mst2 autoactivation. Binding of RASSF5 to already activated Mst2, however, does not inhibit its kinase activity. Thus, RASSF5 can act as an inhibitor or a potential positive regulator of Mst2, depending on whether it binds to Mst2 before or after activation-loop phosphorylation. We propose that these temporally sensitive functions of RASSFs enable the Hippo pathway to respond to and integrate diverse cellular signals.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Serina-Treonina Quinases/química , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Ativação Enzimática , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Serina-Treonina Quinase 3 , Transdução de Sinais
7.
Nucleic Acids Res ; 41(3): 1998-2008, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23241389

RESUMO

Escherichia coli can rapidly switch to the metabolism of l-arabinose and d-xylose in the absence of its preferred carbon source, glucose, in a process called carbon catabolite repression. Transcription of the genes required for l-arabinose and d-xylose consumption is regulated by the sugar-responsive transcription factors, AraC and XylR. E. coli represents a promising candidate for biofuel production through the metabolism of hemicellulose, which is composed of d-xylose and l-arabinose. Understanding the l-arabinose/d-xylose regulatory network is key for such biocatalyst development. Unlike AraC, which is a well-studied protein, little is known about XylR. To gain insight into XylR function, we performed biochemical and structural studies. XylR contains a C-terminal AraC-like domain. However, its N-terminal d-xylose-binding domain contains a periplasmic-binding protein (PBP) fold with structural homology to LacI/GalR transcription regulators. Like LacI/GalR proteins, the XylR PBP domain mediates dimerization. However, unlike LacI/GalR proteins, which dimerize in a parallel, side-to-side manner, XylR PBP dimers are antiparallel. Strikingly, d-xylose binding to this domain results in a helix to strand transition at the dimer interface that reorients both DNA-binding domains, allowing them to bind and loop distant operator sites. Thus, the combined data reveal the ligand-induced activation mechanism of a new family of DNA-binding proteins.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Fatores de Transcrição/química , DNA Bacteriano/metabolismo , DNA Bacteriano/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Repressores Lac/química , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Fatores de Transcrição/metabolismo , Xilose/química , Xilose/metabolismo
8.
Proc Natl Acad Sci U S A ; 107(26): 11763-8, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20534443

RESUMO

The segregation of plasmid DNA typically requires three elements: a DNA centromere site, an NTPase, and a centromere-binding protein. Because of their simplicity, plasmid partition systems represent tractable models to study the molecular basis of DNA segregation. Unlike eukaryotes, which utilize the GTPase tubulin to segregate DNA, the most common plasmid-encoded NTPases contain Walker-box and actin-like folds. Recently, a plasmid stability cassette on Bacillus thuringiensis pBtoxis encoding a putative FtsZ/tubulin-like NTPase called TubZ and DNA-binding protein called TubR has been described. How these proteins collaborate to impart plasmid stability, however, is unknown. Here we show that the TubR structure consists of an intertwined dimer with a winged helix-turn-helix (HTH) motif. Strikingly, however, the TubR recognition helices mediate dimerization, making canonical HTH-DNA interactions impossible. Mutagenesis data indicate that a basic patch, encompassing the two wing regions and the N termini of the recognition helices, mediates DNA binding, which indicates an unusual HTH-DNA interaction mode in which the N termini of the recognition helices insert into a single DNA groove and the wings into adjacent DNA grooves. The TubZ structure shows that it is as similar structurally to eukaryotic tubulin as it is to bacterial FtsZ. TubZ forms polymers with guanine nucleotide-binding characteristics and polymer dynamics similar to tubulin. Finally, we show that the exposed TubZ C-terminal region interacts with TubR-DNA, linking the TubR-bound pBtoxis to TubZ polymerization. The combined data suggest a mechanism for TubZ-polymer powered plasmid movement.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Cristalografia por Raios X , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Genes Bacterianos , Sequências Hélice-Volta-Hélice , Modelos Biológicos , Modelos Moleculares , Nucleosídeo-Trifosfatase/genética , Plasmídeos/genética , Conformação Proteica , Multimerização Proteica , Eletricidade Estática , Homologia Estrutural de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
9.
Nucleic Acids Res ; 37(20): 6970-83, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19759211

RESUMO

Plasmids harbored by Staphylococcus aureus are a major contributor to the spread of bacterial multi-drug resistance. Plasmid conjugation and partition are critical to the dissemination and inheritance of such plasmids. Here, we demonstrate that the ArtA protein encoded by the S. aureus multi-resistance plasmid pSK41 is a global transcriptional regulator of pSK41 genes, including those involved in conjugation and segregation. ArtA shows no sequence homology to any structurally characterized DNA-binding protein. To elucidate the mechanism by which it specifically recognizes its DNA site, we obtained the structure of ArtA bound to its cognate operator, ACATGACATG. The structure reveals that ArtA is representative of a new family of ribbon-helix-helix (RHH) DNA-binding proteins that contain extended, N-terminal basic motifs. Strikingly, unlike most well-studied RHH proteins ArtA binds its cognate operators as a dimer. However, we demonstrate that it is also able to recognize an atypical operator site by binding as a dimer-of-dimers and the extended N-terminal regions of ArtA were shown to be essential for this dimer-of-dimer binding mode. Thus, these data indicate that ArtA is a master regulator of genes critical for both horizontal and vertical transmission of pSK41 and that it can recognize DNA utilizing alternate binding modes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Operadoras Genéticas , Plasmídeos/genética , Regulon , Fatores de Transcrição/genética , Transcrição Gênica
10.
Biochemistry ; 46(21): 6288-98, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17487984

RESUMO

Sialyltransferases are key enzymes involved in the biosynthesis of biologically and pathologically important sialic acid-containing molecules in nature. Binary X-ray crystal structures of a multifunctional Pasteurella multocida sialyltransferase (Delta24PmST1) with a donor analogue CMP-3F(a)Neu5Ac or CMP-3F(e)Neu5Ac were determined at 2.0 and 1.9 A resolutions, respectively. Ternary X-ray structures of the protein in complex with CMP or a donor analogue CMP-3F(a)Neu5Ac and an acceptor lactose have been determined at 2.0 and 2.27 A resolutions, respectively. This represents the first sialyltransferase structure and the first GT-B-type glycosyltransferase structure that is bound to both a donor analogue and an acceptor simultaneously. The four structures presented here reveal that binding of the nucleotide-activated donor sugar causes a buried tryptophan to flip out of the protein core to interact with the donor sugar and helps define the acceptor sugar binding site. Additionally, key amino acid residues involved in the catalysis have been identified. Structural and kinetic data support a direct displacement mechanism involving an oxocarbenium ion-like transition state assisted with Asp141 serving as a general base to activate the acceptor hydroxyl group.


Assuntos
Lactose/química , Pasteurella multocida/enzimologia , Ácidos Siálicos/química , Sialiltransferases/química , Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Glicosiltransferases/química , Cinética , Especificidade por Substrato , Triptofano
11.
Biochemistry ; 45(7): 2139-48, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16475803

RESUMO

Sialyltransferases catalyze reactions that transfer a sialic acid from CMP-sialic acid to an acceptor (a structure terminated with galactose, N-acetylgalactosamine, or sialic acid). They are key enzymes that catalyze the synthesis of sialic acid-containing oligosaccharides, polysaccharides, and glycoconjugates that play pivotal roles in many critical physiological and pathological processes. The structures of a truncated multifunctional Pasteurella multocida sialyltransferase (Delta24PmST1), in the absence and presence of CMP, have been determined by X-ray crystallography at 1.65 and 2.0 A resolutions, respectively. The Delta24PmST1 exists as a monomer in solution and in crystals. Different from the reported crystal structure of a bifunctional sialyltransferase CstII that has only one Rossmann domain, the overall structure of the Delta24PmST1 consists of two separate Rossmann nucleotide-binding domains. The Delta24PmST1 structure, thus, represents the first sialyltransferase structure that belongs to the glycosyltransferase-B (GT-B) structural group. Unlike all other known GT-B structures, however, there is no C-terminal extension that interacts with the N-terminal domain in the Delta24PmST1 structure. The CMP binding site is located in the deep cleft between the two Rossmann domains. Nevertheless, the CMP only forms interactions with residues in the C-terminal domain. The binding of CMP to the protein causes a large closure movement of the N-terminal Rossmann domain toward the C-terminal nucleotide-binding domain. Ser 143 of the N-terminal domain moves up to hydrogen-bond to Tyr 388 of the C-terminal domain. Both Ser 143 and Tyr 388 form hydrogen bonds to a water molecule, which in turn hydrogen-bonds to the terminal phosphate oxygen of CMP. These interactions may trigger the closure between the two domains. Additionally, a short helix near the active site seen in the apo structure becomes disordered upon binding to CMP. This helix may swing down upon binding to donor CMP-sialic acid to form the binding pocket for an acceptor.


Assuntos
Monofosfato de Citidina/farmacologia , Pasteurella multocida/enzimologia , Sialiltransferases/efeitos dos fármacos , Cristalização , Cristalografia por Raios X , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Sialiltransferases/química , Sialiltransferases/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA